我們可以透過列表產生式簡單直接地建立一個列表,但是受到記憶體限制,列表容量肯定是有限的。而且,建立一個包含100萬個元素的列表,不僅佔用很大的儲存空間,而且如果我們只需要存取前面幾個元素,那後面絕大多數元素佔用的空間都白白浪費了。
所以,如果列表元素可以依照某種演算法推算出來,那我們是否可以在循環的過程中不斷推算出後續的元素呢?這樣就不必創建完整的list,從而節省大量的空間。在Python中,這種一邊循環一邊計算的機制,稱為生成器(Generator)。
要創建一個generator,有很多種方法。第一種方法很簡單,只要把一個列表產生式的[]改成(),就創建了一個generator:
>>> mylist = [ x for x in range(1, 10)] >>> mylist [1, 2, 3, 4, 5, 6, 7, 8, 9] >>> gen = (x for x in range(1,10)) >>> gen <generator object <genexpr> at 0x7f1d7fd0f5a0>
創建mylist和gen的區別僅在於最外層的[]和( ),mylist是一個list,而gen是一個generator(生成器)。
我們可以直接列印出list的每個元素,但我們要怎麼列印出generator的每一個元素呢?
如果要一個一個打印出來,可以透過generator的next()方法:
>>> gen.next() 1 >>> gen.next() 2 >>> gen.next() 3 ... >>> gen.next() 9 >>> gen.next() Traceback (most recent call last): File "<stdin>", line 1, in <module> StopIteration
我們講過,generator保存的是演算法,每次調用next(),就計算出下一個元素的值,直到計算到最後一個元素,沒有更多的元素時,拋出StopIteration的錯誤。
其實我們可以使用for循環來代替next()方式, 這樣才更符合高效率的程式設計思維:
>>> gen = ( x for x in range(1, 10)) >>> for num in gen: ... print num ... 1 2 3 4 5 6 7 8 9
ator
1, 1, 2, 3, 5, 8, 13, 21, 34, ...
def fib(max): n = 0 a, b = 0, 1 while n < max: print b a, b = b, a + b n = n + 1上面的函數可以輸出斐波那契數列的前N個數:
>>> fib(6) 1 1 2 3 5 8上面的函數可以輸出斐波那契數列的前N個數:
def fib(max): n = 0 a, b = 0, 1 while n < max: yield b a, b = b, a + b n = n + 1上面的函數可以輸出斐波那契數列的前N個數:
>>> fib(6) <generator object fib at 0x104feaaa0>上面的函數可以輸出斐波那契數列的前N個數:
>>> def odd(): ... print 'step 1' ... yield 1 ... print 'step 2' ... yield 3 ... print 'step 3' ... yield 5 ... >>> o = odd() >>> o.next() step 1 1 >>> o.next() step 2 3 >>> o.next() step 3 5 >>> o.next() Traceback (most recent call last): File "<stdin>", line 1, in <module> StopIteration
仔細觀察,可以看出,fib函數實際上是定義了斐波拉契數列的推算規則,可以從第一個元素開始,推算出後續任意的元素,這種邏輯其實非常類似generator。
也就是說,上面的函數和generator只有一步之遙。要把fib函數變成generator,只要要把print b改為yield b就可以了:>>> for n in fib(6): ... print n ... 1 1 2 3 5 8
這就是定義generator的另一種方法。如果一個函數定義中包含yield關鍵字,那麼這個函數就不再是一個普通函數,而是一個generator:
rrreee
舉個簡單的例子,定義一個generator,依序返回數字1,3,5:
rrreee

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

如何在10小時內教計算機小白編程基礎?如果你只有10個小時來教計算機小白一些編程知識,你會選擇教些什麼�...

使用FiddlerEverywhere進行中間人讀取時如何避免被檢測到當你使用FiddlerEverywhere...

Python3.6環境下加載Pickle文件報錯:ModuleNotFoundError:Nomodulenamed...

如何解決jieba分詞在景區評論分析中的問題?當我們在進行景區評論分析時,往往會使用jieba分詞工具來處理文�...

如何使用正則表達式匹配到第一個閉合標籤就停止?在處理HTML或其他標記語言時,常常需要使用正則表達式來�...


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

記事本++7.3.1
好用且免費的程式碼編輯器

SAP NetWeaver Server Adapter for Eclipse
將Eclipse與SAP NetWeaver應用伺服器整合。