1.原始碼位置
頭檔:http://trac.nginx.org/nginx/browser/nginx/src/core/ngx_palloc.h
原始檔:http://trac.nginx.org/ nginx/browser/nginx/src/core/ngx_palloc.c
2.資料結構定義
先來學習nginx記憶體池的幾個主要資料結構:
1:typedef struct { 2: u_char *last; 3: u_char *end; 4: ngx_pool_t *next; 5: ngx_uint_t failed; 6: } ngx_pool_data_t;
- end:內存池結束位置;
- next:內存池裡面有很多塊內存,這些內存塊就是通過該指針連成鍊錶的,next指向下一塊內存。
- failed:記憶體池分配失敗次數。
- ngx_pool_s(記憶體池頭部結構)
1:struct ngx_pool_s { 2: ngx_pool_data_t d; 3: size_t max; 4: ngx_pool_t *current; 5: ngx_chain_t *chain; 6: ngx_pool_large_t *large; 7: ngx_pool_cleanup_t *cleanup; 8: ngx_log_t *log; 9: };
- large:大塊記憶體鍊錶,即分配空間超過max的情況使用;
- cleanup:釋放記憶體池的callback
- 日誌 log:訊息
- 組成的nginx內存池結構如下圖所示:
- 3.相關函數介紹
- 在分析內存池方法前,需要對幾個主要的內存相關函數作一下介紹:
ngx_calloc:(調用malloc並初始化為0)
1:void * 2: ngx_calloc(size_t size, ngx_log_t *log) 3: { 4: void *p; 5: 6: p = ngx_alloc(size, log); 7: 8: if (p) { 9: ngx_memzero(p, size); 10: } 11: 12: return p; 13: }
ngx_memzero:
ngx_free :
1: #define ngx_free free ngx_memalign:
的倍數。參數posix_memalign( )
1:void * 2: ngx_memalign(size_t alignment, size_t size, ngx_log_t *log) 3: { 4: void *p; 5: int err; 6: rrree ignment主要是針對部分unix平台需要動態的對齊,對POSIX 1003.1d提供的posix_memalign( )進行封裝,在大多數情況下,編譯器和C函式庫透明地幫你處理對齊問題。 nginx中透過宏NGX_HAVE_POSIX_MEMALIGN來控制;呼叫 成功時會回傳
位元組的動態內存,而這塊記憶體的位址是alignmentsize
alignment.必須是2的冪,還是
void指針的大小的倍數。回傳的記憶體區塊的位址放在了
裡面,函數回傳值是0memptr
4.記憶體池基本操作池
- 記憶體池對外的主要方法有:
建立記憶體池 ngx_pool_t * ngx_create_poolsize_c void ngx_destroy_pool(ngx_pool_t *pool );重置記憶體池 void ngx_reset_pool(ngx_pool_t *pool); 記憶體申請(對齊) 內存申請(不對齊) void * ngx_pnalloc(ngx_pool_t *pool, size_t size); 記憶體清除 ngx_int_t ngx_pfree(oidp); 4.1 创建内存池ngx_create_pool
ngx_create_pool用于创建一个内存池,我们创建时,传入我们的需要的初始大小:
1: ngx_pool_t * 2: ngx_create_pool(size_t size, ngx_log_t *log) 3: { 4: ngx_pool_t *p; 5: 6: //以16(NGX_POOL_ALIGNMENT)字节对齐分配size内存 7: p = ngx_memalign(NGX_POOL_ALIGNMENT, size, log); 8: if (p == NULL) { 9: return NULL; 10: } 11: 12: //初始状态:last指向ngx_pool_t结构体之后数据取起始位置 13: p->d.last = (u_char *) p + sizeof(ngx_pool_t); 14: //end指向分配的整个size大小的内存的末尾 15: p->d.end = (u_char *) p + size; 16: 17: p->d.next = NULL; 18: p->d.failed = 0; 19: 20: size = size - sizeof(ngx_pool_t); 21: //#define NGX_MAX_ALLOC_FROM_POOL (ngx_pagesize - 1),内存池最大不超过4095,x86中页的大小为4K 22: p->max = (size 23: 24: p->current = p; 25: p->chain = NULL; 26: p->large = NULL; 27: p->cleanup = NULL; 28: p->log = log; 29: 30: return p; 31: } nginx对内存的管理分为大内存与小内存,当某一个申请的内存大于某一个值时,就需要从大内存中分配空间,否则从小内存中分配空间。
nginx中的内存池是在创建的时候就设定好了大小,在以后分配小块内存的时候,如果内存不够,则是重新创建一块内存串到内存池中,而不是将原有的内存池进行扩张。当要分配大块内存是,则是在内存池外面再分配空间进行管理的,称为大块内存池。
4.2 内存申请 ngx_palloc
1:void * 2: ngx_palloc(ngx_pool_t *pool, size_t size) 3: { 4: u_char *m; 5: ngx_pool_t *p; 6: 7: //如果申请的内存大小小于内存池的max值 8: if (size max) { 9: 10: p = pool->current; 11: 12: do { 13: //对内存地址进行对齐处理 14: m = ngx_align_ptr(p->d.last, NGX_ALIGNMENT); 15: 16: //如果当前内存块够分配内存,则直接分配 17: if ((size_t) (p->d.end - m) >= size) 18: { 19: p->d.last = m + size; 20: 21: return m; 22: } 23: 24: //如果当前内存块有效容量不够分配,则移动到下一个内存块进行分配 25: p = p->d.next; 26: 27: } while (p); 28: 29: //当前所有内存块都没有空闲了,开辟一块新的内存,如下2详细解释 30: return ngx_palloc_block(pool, size); 31: } 32: 33: //分配大块内存 34: return ngx_palloc_large(pool, size); 35: } 需要说明的几点:
1、ngx_align_ptr,这是一个用来内存地址取整的宏,非常精巧,一句话就搞定了。作用不言而喻,取整可以降低CPU读取内存的次数,提高性能。因为这里并没有真正意义调用malloc等函数申请内存,而是移动指针标记而已,所以内存对齐的活,C编译器帮不了你了,得自己动手。
1: #define ngx_align_ptr(p, a) \ 2: (u_char *) (((uintptr_t) (p) + ((uintptr_t) a - 1)) & ~((uintptr_t) a - 1)) 2、开辟一个新的内存块 ngx_palloc_block(ngx_pool_t *pool, size_t size)
这个函数是用来分配新的内存块,为pool内存池开辟一个新的内存块,并申请使用size大小的内存;
1:static void * 2: ngx_palloc_block(ngx_pool_t *pool, size_t size) 3: { 4: u_char *m; 5: size_t psize; 6: ngx_pool_t *p, *new; 7: 8: //计算内存池第一个内存块的大小 9: psize = (size_t) (pool->d.end - (u_char *) pool); 10: 11: //分配和第一个内存块同样大小的内存块 12: m = ngx_memalign(NGX_POOL_ALIGNMENT, psize, pool->log); 13: if (m == NULL) { 14: return NULL; 15: } 16: 17: new = (ngx_pool_t *) m; 18: 19: //设置新内存块的end 20: new->d.end = m + psize; 21: new->d.next = NULL; 22: new->d.failed = 0; 23: 24: //将指针m移动到d后面的一个位置,作为起始位置 25: m += sizeof(ngx_pool_data_t); 26: //对m指针按4字节对齐处理 27: m = ngx_align_ptr(m, NGX_ALIGNMENT); 28: //设置新内存块的last,即申请使用size大小的内存 29: new->d.last = m + size; 30: 31: //这里的循环用来找最后一个链表节点,这里failed用来控制循环的长度,如果分配失败次数达到5次,就忽略,不需要每次都从头找起 32: for (p = pool->current; p->d.next; p = p->d.next) { 33: if (p->d.failed++ > 4) { 34: pool->current = p->d.next; 35: } 36: } 37: 38: p->d.next = new; 39: 40: return m; 41: } 3、分配大块内存 ngx_palloc_large(ngx_pool_t *pool, size_t size)
在ngx_palloc中首先会判断申请的内存大小是否超过内存块的最大限值,如果超过,则直接调用ngx_palloc_large,进入大内存块的分配流程;
1:static void * 2: ngx_palloc_large(ngx_pool_t *pool, size_t size) 3: { 4: void *p; 5: ngx_uint_t n; 6: ngx_pool_large_t *large; 7: 8: // 直接在系统堆中分配一块大小为size的空间 9: p = ngx_alloc(size, pool->log); 10: if (p == NULL) { 11: return NULL; 12: } 13: 14: n = 0; 15: 16: // 查找到一个空的large区,如果有,则将刚才分配的空间交由它管理 17: for (large = pool->large; large; large = large->next) { 18: if (large->alloc == NULL) { 19: large->alloc = p; 20: return p; 21: } 22: //为了提高效率, 如果在三次内没有找到空的large结构体,则创建一个 23: if (n++ > 3) { 24: break; 25: } 26: } 27: 28: 29: large = ngx_palloc(pool, sizeof(ngx_pool_large_t)); 30: if (large == NULL) { 31: ngx_free(p); 32: return NULL; 33: } 34: 35: //将large链接到内存池 36: large->alloc = p; 37: large->next = pool->large; 38: pool->large = large; 39: 40: return p; 41: } 整个内存池分配如下图:
4.3 内存池重置 ngx_reset_pool
1:void 2: ngx_reset_pool(ngx_pool_t *pool) 3: { 4: ngx_pool_t *p; 5: ngx_pool_large_t *l; 6: 7: //释放大块内存 8: for (l = pool->large; l; l = l->next) { 9: if (l->alloc) { 10: ngx_free(l->alloc); 11: } 12: } 13: 14: // 重置所有小块内存区 15: for (p = pool; p; p = p->d.next) { 16: p->d.last = (u_char *) p + sizeof(ngx_pool_t); 17: p->d.failed = 0; 18: } 19: 20: pool->current = pool; 21: pool->chain = NULL; 22: pool->large = NULL; 23: } 4.4 内存池释放 ngx_pfree
1: ngx_int_t 2: ngx_pfree(ngx_pool_t *pool, void *p) 3: { 4: ngx_pool_large_t *l; 5: 6: //只检查是否是大内存块,如果是大内存块则释放 7: for (l = pool->large; l; l = l->next) { 8: if (p == l->alloc) { 9: ngx_log_debug1(NGX_LOG_DEBUG_ALLOC, pool->log, 0, 10: "free: %p", l->alloc); 11: ngx_free(l->alloc); 12: l->alloc = NULL; 13: 14: return NGX_OK; 15: } 16: } 17:

在PHP中,trait適用於需要方法復用但不適合使用繼承的情況。 1)trait允許在類中復用方法,避免多重繼承複雜性。 2)使用trait時需注意方法衝突,可通過insteadof和as關鍵字解決。 3)應避免過度使用trait,保持其單一職責,以優化性能和提高代碼可維護性。

依賴注入容器(DIC)是一種管理和提供對象依賴關係的工具,用於PHP項目中。 DIC的主要好處包括:1.解耦,使組件獨立,代碼易維護和測試;2.靈活性,易替換或修改依賴關係;3.可測試性,方便注入mock對象進行單元測試。

SplFixedArray在PHP中是一種固定大小的數組,適用於需要高性能和低內存使用量的場景。 1)它在創建時需指定大小,避免動態調整帶來的開銷。 2)基於C語言數組,直接操作內存,訪問速度快。 3)適合大規模數據處理和內存敏感環境,但需謹慎使用,因其大小固定。

PHP通過$\_FILES變量處理文件上傳,確保安全性的方法包括:1.檢查上傳錯誤,2.驗證文件類型和大小,3.防止文件覆蓋,4.移動文件到永久存儲位置。

JavaScript中處理空值可以使用NullCoalescingOperator(??)和NullCoalescingAssignmentOperator(??=)。 1.??返回第一個非null或非undefined的操作數。 2.??=將變量賦值為右操作數的值,但前提是該變量為null或undefined。這些操作符簡化了代碼邏輯,提高了可讀性和性能。

CSP重要因為它能防範XSS攻擊和限制資源加載,提升網站安全性。 1.CSP是HTTP響應頭的一部分,通過嚴格策略限制惡意行為。 2.基本用法是只允許從同源加載資源。 3.高級用法可設置更細粒度的策略,如允許特定域名加載腳本和样式。 4.使用Content-Security-Policy-Report-Only頭部可調試和優化CSP策略。

HTTP請求方法包括GET、POST、PUT和DELETE,分別用於獲取、提交、更新和刪除資源。 1.GET方法用於獲取資源,適用於讀取操作。 2.POST方法用於提交數據,常用於創建新資源。 3.PUT方法用於更新資源,適用於完整更新。 4.DELETE方法用於刪除資源,適用於刪除操作。

HTTPS是一種在HTTP基礎上增加安全層的協議,主要通過加密數據保護用戶隱私和數據安全。其工作原理包括TLS握手、證書驗證和加密通信。實現HTTPS時需注意證書管理、性能影響和混合內容問題。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

WebStorm Mac版
好用的JavaScript開發工具

禪工作室 13.0.1
強大的PHP整合開發環境

SublimeText3 英文版
推薦:為Win版本,支援程式碼提示!

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

DVWA
Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中