搜尋
首頁後端開發php教程Greenplum创建表--分布键_PHP教程

Greenplum创建表--分布键

Greenplum是分布式系统,创建表时需要指定分布键(创建表需要CREATEDBA权限),目的在于将数据平均分布到各个segment。选择分布键非常重要,选择错了会导致数据不唯一,更严重的是会造成SQL性能急剧下降。


Greenplum有两种分布策略:

1、hash分布。

Greenplum默认使用hash分布策略。该策略可选一个或者多个列作为分布键(distribution key,简称DK)。分布键做hash算法来确认数据存放到对应的segment上。相同分布键值会hash到相同的segment上。表上最好有唯一键或者主键,这样能保证数据均衡分不到各个segment上。语法,distributed by。

如果没有主键或者唯一键,默认选择第一列作为分布键。增加主键



2、随机(randomly)分布。

数据会被随机分不到segment上,相同记录可能会存放在不同的segment上。随机分布可以保证数据平均,但是Greenplum没有跨节点的唯一键约束数据,所以无法保证数据唯一。基于唯一性和性能考虑,推荐使用hash分布,性能部分会另开一篇文档详细介绍。语法,distributed randomly。

一、hash分布键

创建表,未指定分布列、分布类型,默认创建hash分布表,把第一列ID字段作为了分布键。

testDB=# create table t_hash(id int,name varchar(50)) distributed by (id);
CREATE TABLE
testDB=# 
 
testDB=# \d t_hash
           Table "public.t_hash"
 Column |         Type          | Modifiers 
--------+-----------------------+-----------
 id     | integer               | 
 name   | character varying(50) | 
Distributed by: (id)

添加主键后,主键升级为分布键替代了id列。

testDB=# alter table t_hash add primary key (name);
NOTICE:  updating distribution policy to match new primary key
NOTICE:  ALTER TABLE / ADD PRIMARY KEY will create implicit index "t_hash_pkey" for table "t_hash"
 
ALTER TABLE
testDB=# \d t_hash
           Table "public.t_hash"
 Column |         Type          | Modifiers 
--------+-----------------------+-----------
 id     | integer               | 
 name   | character varying(50) | not null
Indexes:
    "t_hash_pkey" PRIMARY KEY, btree (name)
Distributed by: (name)

验证hash分布表可实现主键或者唯一键值的唯一性

testDB=# insert into t_hash values(1,'szlsd1');
INSERT 0 1
testDB=#
testDB=# insert into t_hash values(2,'szlsd1');
ERROR:  duplicate key violates unique constraint "t_hash_pkey"(seg2 gp-s3:40000 pid=3855)

另外,主键列上依然能够创建唯一键

testDB=# create unique index u_id on t_hash(name);
CREATE INDEX
testDB=#
testDB=#
testDB=# \d t_hash
           Table "public.t_hash"
 Column |         Type          | Modifiers
--------+-----------------------+-----------
 id     | integer               |
 name   | character varying(50) | not null
Indexes:
    "t_hash_pkey" PRIMARY KEY, btree (name)
    "u_id" UNIQUE, btree (name)
Distributed by: (name)

但是,非主键列无法单独创建唯一索引,想创建的话必须包含多有分布键列

testDB=#  create unique index uk_id on t_hash(id);
ERROR:  UNIQUE index must contain all columns in the distribution key of relation "t_hash"
testDB=#  create unique index uk_id on t_hash(id,name);
CREATE INDEX
testDB=# \d t_hash
           Table "public.t_hash"
 Column |         Type          | Modifiers
--------+-----------------------+-----------
 id     | integer               |
 name   | character varying(50) | not null
Indexes:
    "t_hash_pkey" PRIMARY KEY, btree (name)
    "uk_id" UNIQUE, btree (id, name)
Distributed by: (name)

删除主键后,原hash分布键依然不变。

testDB=# alter table t_hash drop constraint t_hash_pkey;
ALTER TABLE
testDB=# \d t_hash
           Table "public.t_hash"
 Column |         Type          | Modifiers
--------+-----------------------+-----------
 id     | integer               |
 name   | character varying(50) | not null
Distributed by: (name)

当分布键不是主键或者唯一键时,我们来验证分布键的相同值落在一个segment的结论。

下面的实验,name列是分布键,我们插入相同的name值,可以看到7条记录都落在了2号segment节点中。

testDB=#  insert into t_hash values(1,'szlsd');
INSERT 0 1
testDB=#  insert into t_hash values(2,'szlsd');
INSERT 0 1
testDB=#  insert into t_hash values(3,'szlsd');
INSERT 0 1
testDB=#  insert into t_hash values(4,'szlsd');
INSERT 0 1
testDB=#  insert into t_hash values(5,'szlsd');
INSERT 0 1
testDB=#  insert into t_hash values(6,'szlsd');
INSERT 0 1
testDB=#
testDB=#
testDB=# select gp_segment_id,count(*) from t_hash group by gp_segment_id; 
 gp_segment_id | count
---------------+-------
             2 |     7
(1 row)

二、随机分布键

创建随机分布表需加distributed randomly关键字,具体使用哪列作为分布键不得而知。

testDB=# create table t_random(id int ,name varchar(100)) distributed randomly;
CREATE TABLE
testDB=#
testDB=#
testDB=# \d t_random
           Table "public.t_random"
 Column |          Type          | Modifiers
--------+------------------------+-----------
 id     | integer                |
 name   | character varying(100) |
Distributed randomly

验证主键/唯一键的唯一性,可以看到随机分布表不能创建主键和唯一键

testDB=# alter table t_random add primary key (id,name);
ERROR:  PRIMARY KEY and DISTRIBUTED RANDOMLY are incompatible
testDB=#
testDB=# create unique index uk_r_id on t_random(id);
ERROR:  UNIQUE and DISTRIBUTED RANDOMLY are incompatible
testDB=#

从实验中可以看出无法实现数据的唯一性。并且,数据插入随机分布表,并不是轮询插入,实验中共有3个segment,但是在1号插入3条记录,在2号segment节点插入2条记录后,才在0号segment中插入数据。随机分布表如何实现数据平均分配不得而知。这个实验也验证了随机分布表的相同值分布在不同segment的结论。

testDB=# insert into t_random values(1,'szlsd3');
INSERT 0 1
testDB=# select gp_segment_id,count(*) from t_random group by gp_segment_id;
 gp_segment_id | count
---------------+-------
             1 |     1
(1 row)
 
testDB=#
testDB=# insert into t_random values(1,'szlsd3');
INSERT 0 1
testDB=# select gp_segment_id,count(*) from t_random group by gp_segment_id;
 gp_segment_id | count
---------------+-------
             2 |     1
             1 |     1
(2 rows)
 
testDB=# insert into t_random values(1,'szlsd3');
INSERT 0 1
testDB=# select gp_segment_id,count(*) from t_random group by gp_segment_id;
 gp_segment_id | count
---------------+-------
             2 |     1
             1 |     2
(2 rows)
 
testDB=# insert into t_random values(1,'szlsd3');
INSERT 0 1
testDB=# select gp_segment_id,count(*) from t_random group by gp_segment_id;
 gp_segment_id | count
---------------+-------
             2 |     2
             1 |     2
(2 rows)
 
testDB=# insert into t_random values(1,'szlsd3');
INSERT 0 1
testDB=# select gp_segment_id,count(*) from t_random group by gp_segment_id;
 gp_segment_id | count
---------------+-------
             2 |     2
             1 |     3
(2 rows)
 
testDB=# insert into t_random values(1,'szlsd3');
INSERT 0 1
testDB=# select gp_segment_id,count(*) from t_random group by gp_segment_id;
 gp_segment_id | count
---------------+-------
             2 |     2
             1 |     3
             0 |     1
(3 rows)

三、CTAS继承原表分布键

Greenplum中有两种CTAS语法,无论哪种语法,都默认继承原表的分布键。但是,不会继承表的一些特殊属性,如主键、唯一键、APPENDONLY、COMPRESSTYPE(压缩)等。

testDB=# \d t_hash;
           Table "public.t_hash"
 Column |         Type          | Modifiers
--------+-----------------------+-----------
 id     | integer               |
 name   | character varying(50) | not null
Indexes:
    "t_hash_pkey" PRIMARY KEY, btree (name)
    "uk_id" UNIQUE, btree (id, name)
Distributed by: (name)
 
testDB=#
testDB=#
testDB=# create table t_hash_1 as select * from t_hash;
NOTICE:  Table doesn't have 'DISTRIBUTED BY' clause -- Using column(s) named 'name' as the Greenplum 
Database data distribution key for this table.
HINT:  The 'DISTRIBUTED BY' clause determines the distribution of data. Make sure column(s) chosen are the 
optimal data distribution key to minimize skew.
SELECT 0
testDB=# \d t_hash_1
          Table "public.t_hash_1"
 Column |         Type          | Modifiers
--------+-----------------------+-----------
 id     | integer               |
 name   | character varying(50) |
Distributed by: (name)
 
testDB=#
testDB=# create table t_hash_2 (like t_hash);
NOTICE:  Table doesn't have 'distributed by' clause, defaulting to distribution columns from LIKE table
CREATE TABLE
testDB=# \d t_hash_2
          Table "public.t_hash_2"
 Column |         Type          | Modifiers
--------+-----------------------+-----------
 id     | integer               |
 name   | character varying(50) | not null
Distributed by: (name)

如果CTAS创建表改变分布键,加上distributed by即可。

testDB=# create table t_hash_3 as select * from t_hash distributed by (id);
SELECT 0
testDB=#
testDB=# \d t_hash_3
          Table "public.t_hash_3"
 Column |         Type          | Modifiers
--------+-----------------------+-----------
 id     | integer               |
 name   | character varying(50) |
Distributed by: (id)
 
testDB=#
testDB=#
testDB=# create table t_hash_4 (like t_hash) distributed by (id);
CREATE TABLE
testDB=#
testDB=# \d t_hash4
Did not find any relation named "t_hash4".
testDB=# \d t_hash_4
          Table "public.t_hash_4"
 Column |         Type          | Modifiers
--------+-----------------------+-----------
 id     | integer               |
 name   | character varying(50) | not null
Distributed by: (id)

CTAS时,randomly随机分布键要特别注意,一定要加上distributed randomly,不然原表是hash分布键,CTAS新表则是随机分布键。

testDB=# \d t_random
           Table "public.t_random"
 Column |          Type          | Modifiers
--------+------------------------+-----------
 id     | integer                |
 name   | character varying(100) |
Distributed randomly
 
testDB=#
testDB=# \d t_random_1
          Table "public.t_random_1"
 Column |          Type          | Modifiers
--------+------------------------+-----------
 id     | integer                |
 name   | character varying(100) |
Distributed by: (id)
testDB=# create table t_random_2 as select * from t_random distributed randomly;
SELECT 7
testDB=#
testDB=# \d t_random_2
          Table "public.t_random_2"
 Column |          Type          | Modifiers
--------+------------------------+-----------
 id     | integer                |
 name   | character varying(100) |
Distributed randomly

参考:

《Greenplum企业应用实战》

《Greenplum4.2.2管理员指南》

以上就是Greenplum创建表--分布键_PHP教程的内容,更多相关内容请关注PHP中文网(www.php.cn)!


陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
PHP的當前狀態:查看網絡開發趨勢PHP的當前狀態:查看網絡開發趨勢Apr 13, 2025 am 12:20 AM

PHP在現代Web開發中仍然重要,尤其在內容管理和電子商務平台。 1)PHP擁有豐富的生態系統和強大框架支持,如Laravel和Symfony。 2)性能優化可通過OPcache和Nginx實現。 3)PHP8.0引入JIT編譯器,提升性能。 4)雲原生應用通過Docker和Kubernetes部署,提高靈活性和可擴展性。

PHP與其他語言:比較PHP與其他語言:比較Apr 13, 2025 am 12:19 AM

PHP適合web開發,特別是在快速開發和處理動態內容方面表現出色,但不擅長數據科學和企業級應用。與Python相比,PHP在web開發中更具優勢,但在數據科學領域不如Python;與Java相比,PHP在企業級應用中表現較差,但在web開發中更靈活;與JavaScript相比,PHP在後端開發中更簡潔,但在前端開發中不如JavaScript。

PHP與Python:核心功能PHP與Python:核心功能Apr 13, 2025 am 12:16 AM

PHP和Python各有優勢,適合不同場景。 1.PHP適用於web開發,提供內置web服務器和豐富函數庫。 2.Python適合數據科學和機器學習,語法簡潔且有強大標準庫。選擇時應根據項目需求決定。

PHP:網絡開發的關鍵語言PHP:網絡開發的關鍵語言Apr 13, 2025 am 12:08 AM

PHP是一種廣泛應用於服務器端的腳本語言,特別適合web開發。 1.PHP可以嵌入HTML,處理HTTP請求和響應,支持多種數據庫。 2.PHP用於生成動態網頁內容,處理表單數據,訪問數據庫等,具有強大的社區支持和開源資源。 3.PHP是解釋型語言,執行過程包括詞法分析、語法分析、編譯和執行。 4.PHP可以與MySQL結合用於用戶註冊系統等高級應用。 5.調試PHP時,可使用error_reporting()和var_dump()等函數。 6.優化PHP代碼可通過緩存機制、優化數據庫查詢和使用內置函數。 7

PHP:許多網站的基礎PHP:許多網站的基礎Apr 13, 2025 am 12:07 AM

PHP成為許多網站首選技術棧的原因包括其易用性、強大社區支持和廣泛應用。 1)易於學習和使用,適合初學者。 2)擁有龐大的開發者社區,資源豐富。 3)廣泛應用於WordPress、Drupal等平台。 4)與Web服務器緊密集成,簡化開發部署。

超越炒作:評估當今PHP的角色超越炒作:評估當今PHP的角色Apr 12, 2025 am 12:17 AM

PHP在現代編程中仍然是一個強大且廣泛使用的工具,尤其在web開發領域。 1)PHP易用且與數據庫集成無縫,是許多開發者的首選。 2)它支持動態內容生成和麵向對象編程,適合快速創建和維護網站。 3)PHP的性能可以通過緩存和優化數據庫查詢來提升,其廣泛的社區和豐富生態系統使其在當今技術棧中仍具重要地位。

PHP中的弱參考是什麼?什麼時候有用?PHP中的弱參考是什麼?什麼時候有用?Apr 12, 2025 am 12:13 AM

在PHP中,弱引用是通過WeakReference類實現的,不會阻止垃圾回收器回收對象。弱引用適用於緩存系統和事件監聽器等場景,需注意其不能保證對象存活,且垃圾回收可能延遲。

解釋PHP中的__ Invoke Magic方法。解釋PHP中的__ Invoke Magic方法。Apr 12, 2025 am 12:07 AM

\_\_invoke方法允許對象像函數一樣被調用。 1.定義\_\_invoke方法使對象可被調用。 2.使用$obj(...)語法時,PHP會執行\_\_invoke方法。 3.適用於日誌記錄和計算器等場景,提高代碼靈活性和可讀性。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
3 週前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解鎖Myrise中的所有內容
4 週前By尊渡假赌尊渡假赌尊渡假赌

熱工具

MantisBT

MantisBT

Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )專業的PHP整合開發工具

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用