Greenplum创建表--分布键
Greenplum是分布式系统,创建表时需要指定分布键(创建表需要CREATEDBA权限),目的在于将数据平均分布到各个segment。选择分布键非常重要,选择错了会导致数据不唯一,更严重的是会造成SQL性能急剧下降。
Greenplum有两种分布策略:
1、hash分布。
Greenplum默认使用hash分布策略。该策略可选一个或者多个列作为分布键(distribution key,简称DK)。分布键做hash算法来确认数据存放到对应的segment上。相同分布键值会hash到相同的segment上。表上最好有唯一键或者主键,这样能保证数据均衡分不到各个segment上。语法,distributed by。
如果没有主键或者唯一键,默认选择第一列作为分布键。增加主键
2、随机(randomly)分布。
数据会被随机分不到segment上,相同记录可能会存放在不同的segment上。随机分布可以保证数据平均,但是Greenplum没有跨节点的唯一键约束数据,所以无法保证数据唯一。基于唯一性和性能考虑,推荐使用hash分布,性能部分会另开一篇文档详细介绍。语法,distributed randomly。
一、hash分布键
创建表,未指定分布列、分布类型,默认创建hash分布表,把第一列ID字段作为了分布键。
testDB=# create table t_hash(id int,name varchar(50)) distributed by (id); CREATE TABLE testDB=# testDB=# \d t_hash Table "public.t_hash" Column | Type | Modifiers --------+-----------------------+----------- id | integer | name | character varying(50) | Distributed by: (id)
添加主键后,主键升级为分布键替代了id列。
testDB=# alter table t_hash add primary key (name); NOTICE: updating distribution policy to match new primary key NOTICE: ALTER TABLE / ADD PRIMARY KEY will create implicit index "t_hash_pkey" for table "t_hash" ALTER TABLE testDB=# \d t_hash Table "public.t_hash" Column | Type | Modifiers --------+-----------------------+----------- id | integer | name | character varying(50) | not null Indexes: "t_hash_pkey" PRIMARY KEY, btree (name) Distributed by: (name)
验证hash分布表可实现主键或者唯一键值的唯一性
testDB=# insert into t_hash values(1,'szlsd1'); INSERT 0 1 testDB=# testDB=# insert into t_hash values(2,'szlsd1'); ERROR: duplicate key violates unique constraint "t_hash_pkey"(seg2 gp-s3:40000 pid=3855)
另外,主键列上依然能够创建唯一键
testDB=# create unique index u_id on t_hash(name); CREATE INDEX testDB=# testDB=# testDB=# \d t_hash Table "public.t_hash" Column | Type | Modifiers --------+-----------------------+----------- id | integer | name | character varying(50) | not null Indexes: "t_hash_pkey" PRIMARY KEY, btree (name) "u_id" UNIQUE, btree (name) Distributed by: (name)
但是,非主键列无法单独创建唯一索引,想创建的话必须包含多有分布键列
testDB=# create unique index uk_id on t_hash(id); ERROR: UNIQUE index must contain all columns in the distribution key of relation "t_hash" testDB=# create unique index uk_id on t_hash(id,name); CREATE INDEX testDB=# \d t_hash Table "public.t_hash" Column | Type | Modifiers --------+-----------------------+----------- id | integer | name | character varying(50) | not null Indexes: "t_hash_pkey" PRIMARY KEY, btree (name) "uk_id" UNIQUE, btree (id, name) Distributed by: (name)
删除主键后,原hash分布键依然不变。
testDB=# alter table t_hash drop constraint t_hash_pkey; ALTER TABLE testDB=# \d t_hash Table "public.t_hash" Column | Type | Modifiers --------+-----------------------+----------- id | integer | name | character varying(50) | not null Distributed by: (name)
当分布键不是主键或者唯一键时,我们来验证分布键的相同值落在一个segment的结论。
下面的实验,name列是分布键,我们插入相同的name值,可以看到7条记录都落在了2号segment节点中。
testDB=# insert into t_hash values(1,'szlsd'); INSERT 0 1 testDB=# insert into t_hash values(2,'szlsd'); INSERT 0 1 testDB=# insert into t_hash values(3,'szlsd'); INSERT 0 1 testDB=# insert into t_hash values(4,'szlsd'); INSERT 0 1 testDB=# insert into t_hash values(5,'szlsd'); INSERT 0 1 testDB=# insert into t_hash values(6,'szlsd'); INSERT 0 1 testDB=# testDB=# testDB=# select gp_segment_id,count(*) from t_hash group by gp_segment_id; gp_segment_id | count ---------------+------- 2 | 7 (1 row)
二、随机分布键
创建随机分布表需加distributed randomly关键字,具体使用哪列作为分布键不得而知。
testDB=# create table t_random(id int ,name varchar(100)) distributed randomly; CREATE TABLE testDB=# testDB=# testDB=# \d t_random Table "public.t_random" Column | Type | Modifiers --------+------------------------+----------- id | integer | name | character varying(100) | Distributed randomly
验证主键/唯一键的唯一性,可以看到随机分布表不能创建主键和唯一键
testDB=# alter table t_random add primary key (id,name); ERROR: PRIMARY KEY and DISTRIBUTED RANDOMLY are incompatible testDB=# testDB=# create unique index uk_r_id on t_random(id); ERROR: UNIQUE and DISTRIBUTED RANDOMLY are incompatible testDB=#
从实验中可以看出无法实现数据的唯一性。并且,数据插入随机分布表,并不是轮询插入,实验中共有3个segment,但是在1号插入3条记录,在2号segment节点插入2条记录后,才在0号segment中插入数据。随机分布表如何实现数据平均分配不得而知。这个实验也验证了随机分布表的相同值分布在不同segment的结论。
testDB=# insert into t_random values(1,'szlsd3'); INSERT 0 1 testDB=# select gp_segment_id,count(*) from t_random group by gp_segment_id; gp_segment_id | count ---------------+------- 1 | 1 (1 row) testDB=# testDB=# insert into t_random values(1,'szlsd3'); INSERT 0 1 testDB=# select gp_segment_id,count(*) from t_random group by gp_segment_id; gp_segment_id | count ---------------+------- 2 | 1 1 | 1 (2 rows) testDB=# insert into t_random values(1,'szlsd3'); INSERT 0 1 testDB=# select gp_segment_id,count(*) from t_random group by gp_segment_id; gp_segment_id | count ---------------+------- 2 | 1 1 | 2 (2 rows) testDB=# insert into t_random values(1,'szlsd3'); INSERT 0 1 testDB=# select gp_segment_id,count(*) from t_random group by gp_segment_id; gp_segment_id | count ---------------+------- 2 | 2 1 | 2 (2 rows) testDB=# insert into t_random values(1,'szlsd3'); INSERT 0 1 testDB=# select gp_segment_id,count(*) from t_random group by gp_segment_id; gp_segment_id | count ---------------+------- 2 | 2 1 | 3 (2 rows) testDB=# insert into t_random values(1,'szlsd3'); INSERT 0 1 testDB=# select gp_segment_id,count(*) from t_random group by gp_segment_id; gp_segment_id | count ---------------+------- 2 | 2 1 | 3 0 | 1 (3 rows)
三、CTAS继承原表分布键
Greenplum中有两种CTAS语法,无论哪种语法,都默认继承原表的分布键。但是,不会继承表的一些特殊属性,如主键、唯一键、APPENDONLY、COMPRESSTYPE(压缩)等。
testDB=# \d t_hash; Table "public.t_hash" Column | Type | Modifiers --------+-----------------------+----------- id | integer | name | character varying(50) | not null Indexes: "t_hash_pkey" PRIMARY KEY, btree (name) "uk_id" UNIQUE, btree (id, name) Distributed by: (name) testDB=# testDB=# testDB=# create table t_hash_1 as select * from t_hash; NOTICE: Table doesn't have 'DISTRIBUTED BY' clause -- Using column(s) named 'name' as the Greenplum Database data distribution key for this table. HINT: The 'DISTRIBUTED BY' clause determines the distribution of data. Make sure column(s) chosen are the optimal data distribution key to minimize skew. SELECT 0 testDB=# \d t_hash_1 Table "public.t_hash_1" Column | Type | Modifiers --------+-----------------------+----------- id | integer | name | character varying(50) | Distributed by: (name) testDB=# testDB=# create table t_hash_2 (like t_hash); NOTICE: Table doesn't have 'distributed by' clause, defaulting to distribution columns from LIKE table CREATE TABLE testDB=# \d t_hash_2 Table "public.t_hash_2" Column | Type | Modifiers --------+-----------------------+----------- id | integer | name | character varying(50) | not null Distributed by: (name)
如果CTAS创建表改变分布键,加上distributed by即可。
testDB=# create table t_hash_3 as select * from t_hash distributed by (id); SELECT 0 testDB=# testDB=# \d t_hash_3 Table "public.t_hash_3" Column | Type | Modifiers --------+-----------------------+----------- id | integer | name | character varying(50) | Distributed by: (id) testDB=# testDB=# testDB=# create table t_hash_4 (like t_hash) distributed by (id); CREATE TABLE testDB=# testDB=# \d t_hash4 Did not find any relation named "t_hash4". testDB=# \d t_hash_4 Table "public.t_hash_4" Column | Type | Modifiers --------+-----------------------+----------- id | integer | name | character varying(50) | not null Distributed by: (id)
CTAS时,randomly随机分布键要特别注意,一定要加上distributed randomly,不然原表是hash分布键,CTAS新表则是随机分布键。
testDB=# \d t_random Table "public.t_random" Column | Type | Modifiers --------+------------------------+----------- id | integer | name | character varying(100) | Distributed randomly testDB=# testDB=# \d t_random_1 Table "public.t_random_1" Column | Type | Modifiers --------+------------------------+----------- id | integer | name | character varying(100) | Distributed by: (id)
testDB=# create table t_random_2 as select * from t_random distributed randomly; SELECT 7 testDB=# testDB=# \d t_random_2 Table "public.t_random_2" Column | Type | Modifiers --------+------------------------+----------- id | integer | name | character varying(100) | Distributed randomly
参考:
《Greenplum企业应用实战》
《Greenplum4.2.2管理员指南》
以上就是Greenplum创建表--分布键_PHP教程的内容,更多相关内容请关注PHP中文网(www.php.cn)!

PHP在現代Web開發中仍然重要,尤其在內容管理和電子商務平台。 1)PHP擁有豐富的生態系統和強大框架支持,如Laravel和Symfony。 2)性能優化可通過OPcache和Nginx實現。 3)PHP8.0引入JIT編譯器,提升性能。 4)雲原生應用通過Docker和Kubernetes部署,提高靈活性和可擴展性。

PHP適合web開發,特別是在快速開發和處理動態內容方面表現出色,但不擅長數據科學和企業級應用。與Python相比,PHP在web開發中更具優勢,但在數據科學領域不如Python;與Java相比,PHP在企業級應用中表現較差,但在web開發中更靈活;與JavaScript相比,PHP在後端開發中更簡潔,但在前端開發中不如JavaScript。

PHP和Python各有優勢,適合不同場景。 1.PHP適用於web開發,提供內置web服務器和豐富函數庫。 2.Python適合數據科學和機器學習,語法簡潔且有強大標準庫。選擇時應根據項目需求決定。

PHP是一種廣泛應用於服務器端的腳本語言,特別適合web開發。 1.PHP可以嵌入HTML,處理HTTP請求和響應,支持多種數據庫。 2.PHP用於生成動態網頁內容,處理表單數據,訪問數據庫等,具有強大的社區支持和開源資源。 3.PHP是解釋型語言,執行過程包括詞法分析、語法分析、編譯和執行。 4.PHP可以與MySQL結合用於用戶註冊系統等高級應用。 5.調試PHP時,可使用error_reporting()和var_dump()等函數。 6.優化PHP代碼可通過緩存機制、優化數據庫查詢和使用內置函數。 7

PHP成為許多網站首選技術棧的原因包括其易用性、強大社區支持和廣泛應用。 1)易於學習和使用,適合初學者。 2)擁有龐大的開發者社區,資源豐富。 3)廣泛應用於WordPress、Drupal等平台。 4)與Web服務器緊密集成,簡化開發部署。

PHP在現代編程中仍然是一個強大且廣泛使用的工具,尤其在web開發領域。 1)PHP易用且與數據庫集成無縫,是許多開發者的首選。 2)它支持動態內容生成和麵向對象編程,適合快速創建和維護網站。 3)PHP的性能可以通過緩存和優化數據庫查詢來提升,其廣泛的社區和豐富生態系統使其在當今技術棧中仍具重要地位。

在PHP中,弱引用是通過WeakReference類實現的,不會阻止垃圾回收器回收對象。弱引用適用於緩存系統和事件監聽器等場景,需注意其不能保證對象存活,且垃圾回收可能延遲。

\_\_invoke方法允許對象像函數一樣被調用。 1.定義\_\_invoke方法使對象可被調用。 2.使用$obj(...)語法時,PHP會執行\_\_invoke方法。 3.適用於日誌記錄和計算器等場景,提高代碼靈活性和可讀性。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

MantisBT
Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

記事本++7.3.1
好用且免費的程式碼編輯器

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

PhpStorm Mac 版本
最新(2018.2.1 )專業的PHP整合開發工具

SublimeText3漢化版
中文版,非常好用