搜尋
首頁後端開發php教程php实现Bloom Filter

 Bloom Filter(BF) 是由Bloom在1970年提出的一种多哈希函数映射的快速查找算法,用于快速查找某个元素是否属于集合, 但不要求百分百的准确率。 Bloom filter通常用于爬虫的url去重,即判断某个url是否已经被爬过。 原理方面我引用一篇别人的文章,讲的比较清晰了,在此我不予赘述, 更多信息可以参考其论文。 看过几个php实现的BF,都觉得可读性不是很强, 本文主要给出我对Bloom Filter的一个php实现。

原理:

一. 实例

  为了说明Bloom Filter存在的重要意义,举一个实例:

  假设要你写一个网络蜘蛛(web crawler)。由于网络间的链接错综复杂,蜘蛛在网络间爬行很可能会形成“环”。为了避免形成“环”,就需要知道蜘蛛已经访问过那些URL。给一个URL,怎样知道蜘蛛是否已经访问过呢?稍微想想,就会有如下几种方案:

  1. 将访问过的URL保存到数据库。

  2. 用HashSet将访问过的URL保存起来。那只需接近O(1)的代价就可以查到一个URL是否被访问过了。

  3. URL经过MD5或SHA-1等单向哈希后再保存到HashSet或数据库。

  4. Bit-Map方法。建立一个BitSet,将每个URL经过一个哈希函数映射到某一位。

  方法1~3都是将访问过的URL完整保存,方法4则只标记URL的一个映射位。

  以上方法在数据量较小的情况下都能完美解决问题,但是当数据量变得非常庞大时问题就来了。

  方法1的缺点:数据量变得非常庞大后关系型数据库查询的效率会变得很低。而且每来一个URL就启动一次数据库查询是不是太小题大做了?

  方法2的缺点:太消耗内存。随着URL的增多,占用的内存会越来越多。就算只有1亿个URL,每个URL只算50个字符,就需要5GB内存。

  方法3:由于字符串经过MD5处理后的信息摘要长度只有128Bit,SHA-1处理后也只有160Bit,因此方法3比方法2节省了好几倍的内存。

  方法4消耗内存是相对较少的,但缺点是单一哈希函数发生冲突的概率太高。还记得数据结构课上学过的Hash表冲突的各种解决方法么?若要降低冲突发生的概率到1%,就要将BitSet的长度设置为URL个数的100倍。

  实质上上面的算法都忽略了一个重要的隐含条件:允许小概率的出错,不一定要100%准确!也就是说少量url实际上没有没网络蜘蛛访问,而将它们错判为已访问的代价是很小的??大不了少抓几个网页呗。




二. Bloom Filter的算法

  废话说到这里,下面引入本篇的主角??Bloom Filter。其实上面方法4的思想已经很接近Bloom Filter了。方法四的致命缺点是冲突概率高,为了降低冲突的概念,Bloom Filter使用了多个哈希函数,而不是一个。

 Bloom Filter算法如下:

(1)初始化

  创建一个m位BitSet,先将所有位初始化为0,然后选择k个不同的哈希函数。第i个哈希函数对字符串str哈希的结果记为h(i,str),且h(i,str)的范围是0到m-1 。

(2) 检查字符串是否存在

 
下面是检查字符串str是否被BitSet记录过的过程:

  对于字符串str,分别计算h(1,str),h(2,str)…… h(k,str)。然后检查BitSet的第h(1,str)、h(2,str)…… h(k,str)位是否为1,若其中任何一位不为1则可以判定str一定没有被记录过。若全部位都是1,则“认为”字符串str存在。

  若一个字符串对应的Bit不全为1,则可以肯定该字符串一定没有被Bloom Filter记录过。(这是显然的,因为字符串被记录过,其对应的二进制位肯定全部被设为1了)

  但是若一个字符串对应的Bit全为1,实际上是不能100%的肯定该字符串被Bloom Filter记录过的。(因为有可能该字符串的所有位都刚好是被其他字符串所对应)这种将该字符串划分错的情况,称为false positive 。

(3) 删除字符串 :

字符串加入了就被不能删除了,因为删除会影响到其他字符串。实在需要删除字符串的可以使用Counting bloomfilter(CBF),这是一种基本Bloom Filter的变体,CBF将基本Bloom Filter每一个Bit改为一个计数器,这样就可以实现删除字符串的功能了。

  Bloom Filter跟单哈希函数Bit-Map不同之处在于:Bloom Filter使用了k个哈希函数,每个字符串跟k个bit对应。从而降低了冲突的概率。




三. Bloom Filter参数选择

(1)哈希函数选择

  哈希函数的选择对性能的影响应该是很大的,一个好的哈希函数要能近似等概率的将字符串映射到各个Bit。选择k个不同的哈希函数比较麻烦,一种简单的方法是选择一个哈希函数,然后送入k个不同的参数。

(2)Bit数组大小选择

  哈希函数个数k、位数组大小m、加入的字符串数量n的关系可以参考参考文献1。该文献证明了对于给定的m、n,当 k = ln(2)* m/n 时出错的概率是最小的。

  同时该文献还给出特定的k,m,n的出错概率。例如:根据参考文献,哈希函数个数k取10,位数组大小m设为字符串个数n的20倍时,false positive发生的概率是0.0000889 ,这个概率基本能满足网络爬虫的需求了。

实现:

<?php ///*************************************************************************** // *  // * Copyright (c) 2015 Baidu.com, Inc. All Rights Reserved // *  // **************************************************************************/ //  //  //  ///** // * @file bloomfilter.php // * @author Rachel Zhang(zrqsophia@sina.com) // * @date 2015/07/24 18:48:57 // * @version $Revision$  // * @brief  // *  // **/ class BloomFilter{ var $m; # blocksize var $n; # number of strings to hash var $k; # number of hashing functions var $bitset; # hashing block with size m function BloomFilter($mInit,$nInit){ $this->m = $mInit; $this->n = $nInit; $this->k = ceil(($this->m/$this->n)*log(2)); echo "number of functions: $this->k\n"; $this->bitset = array_fill(0, $this->m, false); } function hashcode($str){ $res = array(); #put k hashing bit into $res $seed = crc32($str); mt_srand($seed); // set random seed, or mt_rand wouldn't provide same random arrays at different generation for($i=0 ; $i<$this->k ; $i++){ $res[] = mt_rand(0,$this->m-1); } return $res; } function addKey($key){ foreach($this->hashcode($key) as $codebit){ $this->bitset[$codebit]=true; } } function existKey($key){ $code=$this->hashcode($key); foreach($code as $codebit){ if($this->bitset[$codebit]==false){ return false; } } return true; } } $bf = new BloomFilter(10,2); $str_add1 = "test1"; $str_add2 = "test2"; $str_notadd3 = "test3"; //var_dump($bf->hashcode($str)); $bf->addKey($str_add1); $bf->addKey($str_add2); var_dump($bf->existKey($str_add1)); var_dump($bf->existKey($str_add2)); var_dump($bf->existKey($str_notadd3)); ?>

版权声明:本文为博主原创文章,未经博主允许不得转载。

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
使用數據庫存儲會話的優點是什麼?使用數據庫存儲會話的優點是什麼?Apr 24, 2025 am 12:16 AM

使用數據庫存儲會話的主要優勢包括持久性、可擴展性和安全性。 1.持久性:即使服務器重啟,會話數據也能保持不變。 2.可擴展性:適用於分佈式系統,確保會話數據在多服務器間同步。 3.安全性:數據庫提供加密存儲,保護敏感信息。

您如何在PHP中實現自定義會話處理?您如何在PHP中實現自定義會話處理?Apr 24, 2025 am 12:16 AM

在PHP中實現自定義會話處理可以通過實現SessionHandlerInterface接口來完成。具體步驟包括:1)創建實現SessionHandlerInterface的類,如CustomSessionHandler;2)重寫接口中的方法(如open,close,read,write,destroy,gc)來定義會話數據的生命週期和存儲方式;3)在PHP腳本中註冊自定義會話處理器並啟動會話。這樣可以將數據存儲在MySQL、Redis等介質中,提升性能、安全性和可擴展性。

什麼是會話ID?什麼是會話ID?Apr 24, 2025 am 12:13 AM

SessionID是網絡應用程序中用來跟踪用戶會話狀態的機制。 1.它是一個隨機生成的字符串,用於在用戶與服務器之間的多次交互中保持用戶的身份信息。 2.服務器生成並通過cookie或URL參數發送給客戶端,幫助在用戶的多次請求中識別和關聯這些請求。 3.生成通常使用隨機算法保證唯一性和不可預測性。 4.在實際開發中,可以使用內存數據庫如Redis來存儲session數據,提升性能和安全性。

您如何在無狀態環境(例如API)中處理會議?您如何在無狀態環境(例如API)中處理會議?Apr 24, 2025 am 12:12 AM

在無狀態環境如API中管理會話可以通過使用JWT或cookies來實現。 1.JWT適合無狀態和可擴展性,但大數據時體積大。 2.Cookies更傳統且易實現,但需謹慎配置以確保安全性。

您如何防止與會議有關的跨站點腳本(XSS)攻擊?您如何防止與會議有關的跨站點腳本(XSS)攻擊?Apr 23, 2025 am 12:16 AM

要保護應用免受與會話相關的XSS攻擊,需採取以下措施:1.設置HttpOnly和Secure標誌保護會話cookie。 2.對所有用戶輸入進行輸出編碼。 3.實施內容安全策略(CSP)限制腳本來源。通過這些策略,可以有效防護會話相關的XSS攻擊,確保用戶數據安全。

您如何優化PHP會話性能?您如何優化PHP會話性能?Apr 23, 2025 am 12:13 AM

优化PHP会话性能的方法包括:1.延迟会话启动,2.使用数据库存储会话,3.压缩会话数据,4.管理会话生命周期,5.实现会话共享。这些策略能显著提升应用在高并发环境下的效率。

什麼是session.gc_maxlifetime配置設置?什麼是session.gc_maxlifetime配置設置?Apr 23, 2025 am 12:10 AM

theSession.gc_maxlifetimesettinginphpdeterminesthelifespanofsessiondata,setInSeconds.1)它'sconfiguredinphp.iniorviaini_set().2)abalanceisesneededeededeedeedeededto toavoidperformance andunununununexpectedLogOgouts.3)

您如何在PHP中配置會話名?您如何在PHP中配置會話名?Apr 23, 2025 am 12:08 AM

在PHP中,可以使用session_name()函數配置會話名稱。具體步驟如下:1.使用session_name()函數設置會話名稱,例如session_name("my_session")。 2.在設置會話名稱後,調用session_start()啟動會話。配置會話名稱可以避免多應用間的會話數據衝突,並增強安全性,但需注意會話名稱的唯一性、安全性、長度和設置時機。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

SublimeText3 英文版

SublimeText3 英文版

推薦:為Win版本,支援程式碼提示!

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

mPDF

mPDF

mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境