搜尋
首頁後端開發Python教學深入理解python多进程编程

1、python多进程编程背景

python中的多进程最大的好处就是充分利用多核cpu的资源,不像python中的多线程,受制于GIL的限制,从而只能进行cpu分配,在python的多进程中,适合于所有的场合,基本上能用多线程的,那么基本上就能用多进程。

在进行多进程编程的时候,其实和多线程差不多,在多线程的包threading中,存在一个线程类Thread,在其中有三种方法来创建一个线程,启动线程,其实在多进程编程中,存在一个进程类Process,也可以使用那集中方法来使用;在多线程中,内存中的数据是可以直接共享的,例如list等,但是在多进程中,内存数据是不能共享的,从而需要用单独的数据结构来处理共享的数据;在多线程中,数据共享,要保证数据的正确性,从而必须要有所,但是在多进程中,锁的考虑应该很少,因为进程是不共享内存信息的,进程之间的交互数据必须要通过特殊的数据结构,在多进程中,主要的内容如下图:

2、多进程的类Process

多进程的类Process和多线程的类Thread差不多的方法,两者的接口基本相同,具体看以下的代码:

#!/usr/bin/env python

from multiprocessing import Process
import os
import time

def func(name):
  print 'start a process'
  time.sleep(3)
  print 'the process parent id :',os.getppid()
  print 'the process id is :',os.getpid()

if __name__ =='__main__':
  processes = []
  for i in range(2):
    p = Process(target=func,args=(i,))
    processes.append(p)
  for i in processes:
    i.start()
  print 'start all process'
  for i in processes:
    i.join()
    #pass
  print 'all sub process is done!'

在上面例子中可以看到,多进程和多线程的API接口是一样一样的,显示创建进程,然后进行start开始运行,然后join等待进程结束。

在需要执行的函数中,打印出了进程的id和pid,从而可以看到父进程和子进程的id号,在linu中,进程主要是使用fork出来的,在创建进程的时候可以查询到父进程和子进程的id号,而在多线程中是无法找到线程的id,执行效果如下:

start all process
start a process
start a process

the process parent id : 8036
the process parent id : 8036
the process id is : 8037
the process id is : 8038
all sub process is done!

在操作系统中查询的id的时候,最好用pstree,清晰:

├─sshd(1508)─┬─sshd(2259)───bash(2261)───python(7520)─┬─python(7521)
    │      │                    ├─python(7522)
    │      │                    ├─python(7523)
    │      │                    ├─python(7524)
    │      │                    ├─python(7525)
    │      │                    ├─python(7526)
    │      │                    ├─python(7527)
    │      │                    ├─python(7528)
    │      │                    ├─python(7529)
    │      │                    ├─python(7530)
    │      │                    ├─python(7531)
    │      │                    └─python(7532)

在进行运行的时候,可以看到,如果没有join语句,那么主进程是不会等待子进程结束的,是一直会执行下去,然后再等待子进程的执行。

在多进程的时候,说,我怎么得到多进程的返回值呢?然后写了下面的代码:

#!/usr/bin/env python

import multiprocessing

class MyProcess(multiprocessing.Process):
  def __init__(self,name,func,args):
    super(MyProcess,self).__init__()
    self.name = name
    self.func = func
    self.args = args
    self.res = ''

  def run(self):
    self.res = self.func(*self.args)
    print self.name
    print self.res
    return (self.res,'kel')

def func(name):
  print 'start process...'
  return name.upper()

if __name__ == '__main__':
  processes = []
  result = []
  for i in range(3):
    p = MyProcess('process',func,('kel',))
    processes.append(p)
  for i in processes:
    i.start()
  for i in processes:
    i.join()
  for i in processes:
    result.append(i.res)
  for i in result:
    print i

尝试从结果中返回值,从而在主进程中得到子进程的返回值,然而,,,并没有结果,后来一想,在进程中,进程之间是不共享内存的 ,那么使用list来存放数据显然是不可行的,进程之间的交互必须依赖于特殊的数据结构,从而以上的代码仅仅是执行进程,不能得到进程的返回值,但是以上代码修改为线程,那么是可以得到返回值的。

3、进程间的交互Queue

进程间交互的时候,首先就可以使用在多线程里面一样的Queue结构,但是在多进程中,必须使用multiprocessing里的Queue,代码如下:

#!/usr/bin/env python

import multiprocessing

class MyProcess(multiprocessing.Process):
  def __init__(self,name,func,args):
    super(MyProcess,self).__init__()
    self.name = name
    self.func = func
    self.args = args
    self.res = ''

  def run(self):
    self.res = self.func(*self.args)

def func(name,q):
  print 'start process...'
  q.put(name.upper())

if __name__ == '__main__':
  processes = []
  q = multiprocessing.Queue()
  for i in range(3):
    p = MyProcess('process',func,('kel',q))
    processes.append(p)
  for i in processes:
    i.start()
  for i in processes:
    i.join()
  while q.qsize() > 0:
    print q.get()

其实这个是上面例子的改进,在其中,并没有使用什么其他的代码,主要就是使用Queue来保存数据,从而可以达到进程间交换数据的目的。

在进行使用Queue的时候,其实用的是socket,感觉,因为在其中使用的还是发送send,然后是接收recv。

在进行数据交互的时候,其实是父进程和所有的子进程进行数据交互,所有的子进程之间基本是没有交互的,除非,但是,也是可以的,例如,每个进程去Queue中取数据,但是这个时候应该是要考虑锁,不然可能会造成数据混乱。

4、 进程之间交互Pipe

在进程之间交互数据的时候还可以使用Pipe,代码如下:

#!/usr/bin/env python

import multiprocessing

class MyProcess(multiprocessing.Process):
  def __init__(self,name,func,args):
    super(MyProcess,self).__init__()
    self.name = name
    self.func = func
    self.args = args
    self.res = ''

  def run(self):
    self.res = self.func(*self.args)

def func(name,q):
  print 'start process...'
  child_conn.send(name.upper())

if __name__ == '__main__':
  processes = []
  parent_conn,child_conn = multiprocessing.Pipe()
  for i in range(3):
    p = MyProcess('process',func,('kel',child_conn))
    processes.append(p)
  for i in processes:
    i.start()
  for i in processes:
    i.join()
  for i in processes:
    print parent_conn.recv()

在以上代码中,主要是使用Pipe中返回的两个socket来进行传输和接收数据,在父进程中,使用的是parent_conn,在子进程中使用的是child_conn,从而子进程发送数据的方法send,而在父进程中进行接收方法recv

最好的地方在于,明确的知道收发的次数,但是如果某个出现异常,那么估计pipe不能使用了。

5、进程池pool

其实在使用多进程的时候,感觉使用pool是最方便的,在多线程中是不存在pool的。

在使用pool的时候,可以限制每次的进程数,也就是剩余的进程是在排队,而只有在设定的数量的进程在运行,在默认的情况下,进程是cpu的个数,也就是根据multiprocessing.cpu_count()得出的结果。

在poo中,有两个方法,一个是map一个是imap,其实这两方法超级方便,在执行结束之后,可以得到每个进程的返回结果,但是缺点就是每次的时候,只能有一个参数,也就是在执行的函数中,最多是只有一个参数的,否则,需要使用组合参数的方法,代码如下所示:

#!/usr/bin/env python

import multiprocessing

def func(name):
  print 'start process'
  return name.upper()

if __name__ == '__main__':
  p = multiprocessing.Pool(5)
  print p.map(func,['kel','smile'])
  for i in p.imap(func,['kel','smile']):
    print i

在使用map的时候,直接返回的一个是一个list,从而这个list也就是函数执行的结果,而在imap中,返回的是一个由结果组成的迭代器,如果需要使用多个参数的话,那么估计需要*args,从而使用参数args。

在使用apply.async的时候,可以直接使用多个参数,如下所示:

#!/usr/bin/env python

import multiprocessing
import time
def func(name):
  print 'start process'
  time.sleep(2)
  return name.upper()

if __name__ == '__main__':
  results = []
  p = multiprocessing.Pool(5)
  for i in range(7):
    res = p.apply_async(func,args=('kel',))
    results.append(res)
  for i in results:
    print i.get(2.1)

在进行得到各个结果的时候,注意使用了一个list来进行append,要不然在得到结果get的时候会阻塞进程,从而将多进程编程了单进程,从而使用了一个list来存放相关的结果,在进行得到get数据的时候,可以设置超时时间,也就是get(timeout=5),这种设置。

总结:

在进行多进程编程的时候,注意进程之间的交互,在执行函数之后,如何得到执行函数的结果,可以使用特殊的数据结构,例如Queue或者Pipe或者其他,在使用pool的时候,可以直接得到结果,map和imap都是直接得到一个list和可迭代对象,而apply_async得到的结果需要用一个list装起来,然后得到每个结果。

以上这篇深入理解python多进程编程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
如何解決Linux終端中查看Python版本時遇到的權限問題?如何解決Linux終端中查看Python版本時遇到的權限問題?Apr 01, 2025 pm 05:09 PM

Linux終端中查看Python版本時遇到權限問題的解決方法當你在Linux終端中嘗試查看Python的版本時,輸入python...

我如何使用美麗的湯來解析HTML?我如何使用美麗的湯來解析HTML?Mar 10, 2025 pm 06:54 PM

本文解釋瞭如何使用美麗的湯庫來解析html。 它詳細介紹了常見方法,例如find(),find_all(),select()和get_text(),以用於數據提取,處理不同的HTML結構和錯誤以及替代方案(SEL)

python對象的序列化和避難所化:第1部分python對象的序列化和避難所化:第1部分Mar 08, 2025 am 09:39 AM

Python 對象的序列化和反序列化是任何非平凡程序的關鍵方面。如果您將某些內容保存到 Python 文件中,如果您讀取配置文件,或者如果您響應 HTTP 請求,您都會進行對象序列化和反序列化。 從某種意義上說,序列化和反序列化是世界上最無聊的事情。誰會在乎所有這些格式和協議?您想持久化或流式傳輸一些 Python 對象,並在以後完整地取回它們。 這是一種在概念層面上看待世界的好方法。但是,在實際層面上,您選擇的序列化方案、格式或協議可能會決定程序運行的速度、安全性、維護狀態的自由度以及與其他系

Python中的數學模塊:統計Python中的數學模塊:統計Mar 09, 2025 am 11:40 AM

Python的statistics模塊提供強大的數據統計分析功能,幫助我們快速理解數據整體特徵,例如生物統計學和商業分析等領域。無需逐個查看數據點,只需查看均值或方差等統計量,即可發現原始數據中可能被忽略的趨勢和特徵,並更輕鬆、有效地比較大型數據集。 本教程將介紹如何計算平均值和衡量數據集的離散程度。除非另有說明,本模塊中的所有函數都支持使用mean()函數計算平均值,而非簡單的求和平均。 也可使用浮點數。 import random import statistics from fracti

如何使用TensorFlow或Pytorch進行深度學習?如何使用TensorFlow或Pytorch進行深度學習?Mar 10, 2025 pm 06:52 PM

本文比較了Tensorflow和Pytorch的深度學習。 它詳細介紹了所涉及的步驟:數據準備,模型構建,培訓,評估和部署。 框架之間的關鍵差異,特別是關於計算刻度的

用美麗的湯在Python中刮擦網頁:搜索和DOM修改用美麗的湯在Python中刮擦網頁:搜索和DOM修改Mar 08, 2025 am 10:36 AM

該教程建立在先前對美麗湯的介紹基礎上,重點是簡單的樹導航之外的DOM操縱。 我們將探索有效的搜索方法和技術,以修改HTML結構。 一種常見的DOM搜索方法是EX

哪些流行的Python庫及其用途?哪些流行的Python庫及其用途?Mar 21, 2025 pm 06:46 PM

本文討論了諸如Numpy,Pandas,Matplotlib,Scikit-Learn,Tensorflow,Tensorflow,Django,Blask和請求等流行的Python庫,並詳細介紹了它們在科學計算,數據分析,可視化,機器學習,網絡開發和H中的用途

如何使用Python創建命令行接口(CLI)?如何使用Python創建命令行接口(CLI)?Mar 10, 2025 pm 06:48 PM

本文指導Python開發人員構建命令行界面(CLIS)。 它使用Typer,Click和ArgParse等庫詳細介紹,強調輸入/輸出處理,並促進用戶友好的設計模式,以提高CLI可用性。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
3 週前By尊渡假赌尊渡假赌尊渡假赌

熱工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

將Eclipse與SAP NetWeaver應用伺服器整合。

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

WebStorm Mac版

WebStorm Mac版

好用的JavaScript開發工具