Asyncore模块提供了以异步的方式写入套接字服务客户端和服务器的基础结构。
只有两种方式使一个程序在单处理器上实现“同时做不止一件事”。多线程编程是最简单和最流行的方式,但是有另一种很不一样的技术,可以使得我们保持多线程的几乎所有优势,却不用真正使用多线程。 如果你的程序主要是受I/O限制的,这是唯一可行的方式。如果你的程序是受处理器限制的,则先发制人的调度线程可能是你真正需要的。但是,很少网络服务器是受处理器限制的。
如果您的操作系统支持在其I / O库的 select() 系统调用(几乎所有系统都支持),那么你可以用它一次处理多个通信信道;当你的I/O在后台忙碌时处理其他工作。虽然这一策略似乎很奇怪很复杂,尤其是最开始的时候,这在很多方面比多线程编程更容易理解和控制。asyncore 模块为你解决了很多困难,使你能快速构建复杂的高性能网络服务器和客户端。对于会话应用程序和协议, asynchat 模块是非常有用的。
两个模块背后的想法就是创建一个或者多个网络 通道, 及 asyncore.dispatcher 和 asynchat.async_chat 类的实例. 如果你没有提供自己的映射的话,创建通道会把这两个实例加到由 loop() 函数使用的全局映射中。
一旦初始化通道被创建,调用 loop() 函数会激活通道服务,这会持续到最后一个通道(包括所有在异步服务中被加到映射中的通道)被关闭。
该模块文件包含一个loop()函数和一个dispatcher基类,其中loop()函数是全局函数,负责检查一个保存着dispatcher实例的dict,也被称为channel。
每一个继承dispatcher类的对象,都可以看作需要处理的socket,因此使用时我们只需定义一个继承dispatcher的类,然后重写一些方法就行,一般都是以handle_开头的方法。
端口转发的示例
如果你的程序想在同一时间做一件一上的事情,多线程是最快也最普遍的方式,但还有一个方式,在I/O流量很大的时候特别实用。如果你的操作系统支持select函数,你就可以让I/O在后台读写。这个模块听起来很复杂,但实际上有很多方式可以理解它,这个文档帮你解决了这些问题。
我感觉这个模块应该是一个以事件驱动的异步I/O,跟C++的事件选择模型类似。每当发生了读、写事件后,会交由我们重写的事件函数进行处理。
我这里有一个使用asyncore模块编写端口转发脚本,从这个脚本可以大概了解asyncore的基本使用。
在文章中,所说的客户端就是我们的电脑,服务端是转发到的地址。也就是客户端发送到这个脚本的信息,这个脚本转发到服务端上。
首先,定义一个forwarder类:
class forwarder(asyncore.dispatcher): def __init__(self, ip, port, remoteip,remoteport,backlog=5): asyncore.dispatcher.__init__(self) self.remoteip=remoteip self.remoteport=remoteport self.create_socket(socket.AF_INET,socket.SOCK_STREAM) self.set_reuse_addr() self.bind((ip,port)) self.listen(backlog) def handle_accept(self): conn, addr = self.accept() # print '--- Connect --- ' sender(receiver(conn),self.remoteip,self.remoteport)
这个类继承自asyncore模块的dispatcher类(它就是我们的主要的类,其中包括了一些之后要重载的函数),构造函数获得5个参数,第1、2个参数是脚本监听的本地IP和端口,第3、4个参数是服务端的IP和端口。第5个参数是listen函数的参数,等待队列最大长度。
如何使用这个类,只需要如下新建一个对象,把相应IP和端口传入,再进入loop即可:
forwarder(options.local_ip,options.local_port,options.remote_ip,options.remote_port) asyncore.loop()
进入loop后相当于开启了一个守护线程,在后台一直运行着,等待socket事件的发生。
因为我们这个脚本是端口转发工具,所以实际上运行的过程是:客户端连接这个脚本的端口,让后发送给这个端口的数据脚本自动转发到服务端地址和端口。所以,首先接收到的应该是连接消息(accept事件)。
那么,当accept事件发生后,就进入了handle_accept函数中。所以我们看到,handle_accept函数实际上就是调用了accept函数接收了客户端连接对象和地址。获得了之后又新建了一个sender类对象,这个对象定义如下:
class sender(asyncore.dispatcher): def __init__(self, receiver, remoteaddr,remoteport): asyncore.dispatcher.__init__(self) self.receiver=receiver receiver.sender=self self.create_socket(socket.AF_INET, socket.SOCK_STREAM) self.connect((remoteaddr, remoteport)) def handle_connect(self): pass def handle_read(self): read = self.recv(4096) # print ' %04i'%sent self.receiver.from_remote_buffer = self.receiver.from_remote_buffer[sent:] def handle_close(self): self.close() self.receiver.close()
这个类也是继承自asyncore.dispatcher,它的构造函数接收3个参数,分别是recv对象(这个之后说到),远端地址,对应端口。
函数中又新建了一个socket,这个socket就是和服务端端口通信的socket,然后调用connect连接这个端口。
之后其实也是进入了一个等待消息的过程,因为我们发送了一个connect,所以下一次接收到的消息应该是connect,而handle_connect是一个pass掉的函数。没有执行任何内容。
在连接完成后,我们就相当于建立好了一个端口转发的通道。当客户端向这个脚本监听的端口发送数据包时,它就会自动转发到服务端端口上。服务端端口返回的数据包,会自动转发到客户端上。
回到构造函数的第1个参数,我们在forwarder类函数中可以看到,传入的是一个receiver(conn)对象,receiver也是一个类,我们来看看这个类的定义:
class receiver(asyncore.dispatcher): def __init__(self,conn): asyncore.dispatcher.__init__(self,conn) self.from_remote_buffer='' self.to_remote_buffer='' self.sender=None def handle_connect(self): pass def handle_read(self): read = self.recv(4096) # print '%04i -->'%len(read) self.from_remote_buffer += read def writable(self): return (len(self.to_remote_buffer) > 0) def handle_write(self): sent = self.send(self.to_remote_buffer) # print '%04i <--'%sent self.to_remote_buffer = self.to_remote_buffer[sent:] def handle_close(self): self.close() if self.sender: self.sender.close()
它也是继承了asyncore.dispatcher,构造函数只接收一个参数,就是connect的返回值,一个连接对象。
实际上这个对象它就是监听、处理与客户端的通信,而之前说的sender对象是监听、处理与服务端的通信。
以上就是Python的Asyncore异步Socket模块及实现端口转发的例子的内容,更多相关内容请关注PHP中文网(www.php.cn)!

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。

Python在Web開發中的關鍵應用包括使用Django和Flask框架、API開發、數據分析與可視化、機器學習與AI、以及性能優化。 1.Django和Flask框架:Django適合快速開發複雜應用,Flask適用於小型或高度自定義項目。 2.API開發:使用Flask或DjangoRESTFramework構建RESTfulAPI。 3.數據分析與可視化:利用Python處理數據並通過Web界面展示。 4.機器學習與AI:Python用於構建智能Web應用。 5.性能優化:通過異步編程、緩存和代碼優

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。

Python在現實世界中的應用包括數據分析、Web開發、人工智能和自動化。 1)在數據分析中,Python使用Pandas和Matplotlib處理和可視化數據。 2)Web開發中,Django和Flask框架簡化了Web應用的創建。 3)人工智能領域,TensorFlow和PyTorch用於構建和訓練模型。 4)自動化方面,Python腳本可用於復製文件等任務。

Python在數據科學、Web開發和自動化腳本領域廣泛應用。 1)在數據科學中,Python通過NumPy、Pandas等庫簡化數據處理和分析。 2)在Web開發中,Django和Flask框架使開發者能快速構建應用。 3)在自動化腳本中,Python的簡潔性和標準庫使其成為理想選擇。

Python的靈活性體現在多範式支持和動態類型系統,易用性則源於語法簡潔和豐富的標準庫。 1.靈活性:支持面向對象、函數式和過程式編程,動態類型系統提高開發效率。 2.易用性:語法接近自然語言,標準庫涵蓋廣泛功能,簡化開發過程。

Python因其簡潔與強大而備受青睞,適用於從初學者到高級開發者的各種需求。其多功能性體現在:1)易學易用,語法簡單;2)豐富的庫和框架,如NumPy、Pandas等;3)跨平台支持,可在多種操作系統上運行;4)適合腳本和自動化任務,提升工作效率。

可以,在每天花費兩個小時的時間內學會Python。 1.制定合理的學習計劃,2.選擇合適的學習資源,3.通過實踐鞏固所學知識,這些步驟能幫助你在短時間內掌握Python。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

DVWA
Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中

SecLists
SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

記事本++7.3.1
好用且免費的程式碼編輯器