python邮件列表里有人发表言论说“python3在10内都无法普及”。在我看来这样的观点有些过于悲观,python3和python2虽然不兼容,但他们之间差别并没很多人想像的那么大。你只需要对自己的代码稍微做些修改就可以很好的同时支持python2和python3的。下面我将简要的介绍一下如何让自己的python代码如何同时支持python2和python3。
一、放弃python 2.6之前的python版本
python 2.6之前的python版本缺少一些新特性,会给你的迁移工作带来不少麻烦。如果不是迫不得已还是放弃对之前版本的支持吧。
二、使用 2to3 工具对代码检查
2to3是python自带的一个代码转换工具,可以将python2的代码自动转换为python3的代码。当然,不幸的是转换出的代码并没有对python2的兼容做任何的处理。所以我们并不真正使用2to3转换出的代码。执行2to3 t.py 查看输出信息,并修正相关问题。
三、使用python -3执行python程序
2to3 可以检查出很多python2&3的兼容性问题,但也有很多问题是2to3发现不了的。在加上 -3 参数后,程序在运行时会在控制台上将python2和python3不一致,同时2to3无法处理的问题提示出来。比如python3和python2中对除法的处理规则做过改变。使用-3参数执行4/2将提示 DeprecationWarning: classic int division 。
四、from __future__ import
“from __future__ import”后即可使使用python的未来特性了。python的完整future特性可见 __future__ 。python3中所有字符都变成了unicode。在python2中unicode字符在定义时需要在字符前面加 u,但在3中则不需要家u,而且在加u后程序会无法编译通过。为了解决该问题可以 “from future import unicode_literals” ,这样python2中字符的行为将和python3中保持一致,python2中定义普通字符将自动识别为unicode。
五、import问题
python3中“少”了很多python2的包,在大多情况下这些包之是改了个名字而已。我们可以在import的时候对这些问题进行处理。
from UserDict import UserDict
#建议按照python3的名字进行import
from UserDict import DictMixin as MutableMapping
except ImportError:#python3
from collections import UserDict
from collections import MutableMapping
六、使用python3的方式写程序
python2中print是关键字,到了python3中print变成了函数。事实上在python2.6中已经带了print函数,所以对print你直接按照2to3中给出的提示改为新写法即可。在python3中对异常的处理做了些变化,这个和print类似,直接按照2to3中的提示修改即可。
七、检查当前运行的python版本
有时候你或许必须为python2和python3写不同的代码,你可以用下面的代码检查当前系统的python版本。
if sys.version > '3':
PY3 = True
else:
PY3 = False
八、six
six 提供了一些简单的工具用来封装 Python 2 和 Python 3 之间的差异性。我并不太推荐使用six。如果不需要支持python2.6之前的python版本,即使不用six也是比较容易处理兼容性问题的。使用six会让你的代码更像python2而不是python3。
python3的普及需要每位pythoner的推动,或许你还无法立即升级到python3,但请现在就开始写兼容python3的代码,并在条件成熟时升级到python3。
注:python2同python3的差异
如果你更全面的了解从python2迁移到python3的相关问题,推荐阅读 Porting to Python 3 这是一本免费的python读物。

Pythonarrayssupportvariousoperations:1)Slicingextractssubsets,2)Appending/Extendingaddselements,3)Insertingplaceselementsatspecificpositions,4)Removingdeleteselements,5)Sorting/Reversingchangesorder,and6)Listcomprehensionscreatenewlistsbasedonexistin

NumPyarraysareessentialforapplicationsrequiringefficientnumericalcomputationsanddatamanipulation.Theyarecrucialindatascience,machinelearning,physics,engineering,andfinanceduetotheirabilitytohandlelarge-scaledataefficiently.Forexample,infinancialanaly

useanArray.ArarayoveralistinpythonwhendeAlingwithHomoGeneData,performance-Caliticalcode,orinterfacingwithccode.1)同質性data:arraysSaveMemorywithTypedElements.2)績效code-performance-calitialcode-calliginal-clitical-clitical-calligation-Critical-Code:Arraysofferferbetterperbetterperperformanceformanceformancefornallancefornalumericalical.3)

不,notalllistoperationsareSupportedByArrays,andviceversa.1)arraysdonotsupportdynamicoperationslikeappendorinsertwithoutresizing,wheremactsperformance.2)listssdonotguaranteeconecontanttanttanttanttanttanttanttanttanttimecomplecomecomplecomecomecomecomecomecomplecomectacccesslectaccesslecrectaccesslerikearraysodo。

toAccesselementsInapythonlist,useIndIndexing,負索引,切片,口頭化。 1)indexingStartSat0.2)否定indexingAccessesessessessesfomtheend.3)slicingextractsportions.4)iterationerationUsistorationUsisturessoreTionsforloopsoreNumeratorseforeporloopsorenumerate.alwaysCheckListListListListlentePtotoVoidToavoIndexIndexIndexIndexIndexIndExerror。

Arraysinpython,尤其是Vianumpy,ArecrucialInsCientificComputingfortheireftheireffertheireffertheirefferthe.1)Heasuedfornumerericalicerationalation,dataAnalysis和Machinelearning.2)Numpy'Simpy'Simpy'simplementIncressionSressirestrionsfasteroperoperoperationspasterationspasterationspasterationspasterationspasterationsthanpythonlists.3)inthanypythonlists.3)andAreseNableAblequick

你可以通過使用pyenv、venv和Anaconda來管理不同的Python版本。 1)使用pyenv管理多個Python版本:安裝pyenv,設置全局和本地版本。 2)使用venv創建虛擬環境以隔離項目依賴。 3)使用Anaconda管理數據科學項目中的Python版本。 4)保留系統Python用於系統級任務。通過這些工具和策略,你可以有效地管理不同版本的Python,確保項目順利運行。

numpyarrayshaveseveraladagesoverandastardandpythonarrays:1)基於基於duetoc的iMplation,2)2)他們的aremoremoremorymorymoremorymoremorymoremorymoremoremory,尤其是WithlargedAtasets和3)效率化,效率化,矢量化函數函數函數函數構成和穩定性構成和穩定性的操作,製造


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

VSCode Windows 64位元 下載
微軟推出的免費、功能強大的一款IDE編輯器

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

EditPlus 中文破解版
體積小,語法高亮,不支援程式碼提示功能

SAP NetWeaver Server Adapter for Eclipse
將Eclipse與SAP NetWeaver應用伺服器整合。

Dreamweaver Mac版
視覺化網頁開發工具