搜尋
首頁後端開發Python教學Python常见数据结构详解

本文详细罗列归纳了Python常见数据结构,并附以实例加以说明,相信对读者有一定的参考借鉴价值。

总体而言Python中常见的数据结构可以统称为容器(container)。序列(如列表和元组)映射(如字典)以及集合(set)是三类主要的容器。

一、序列(列表、元组和字符串)

序列中的每个元素都有自己的编号。Python中有6种内建的序列。其中列表和元组是最常见的类型。其他包括字符串、Unicode字符串、buffer对象和xrange对象。下面重点介绍下列表、元组和字符串。

1、列表

列表是可变的,这是它区别于字符串和元组的最重要的特点,一句话概括即:列表可以修改,而字符串和元组不能。

(1)、创建

通过下面的方式即可创建一个列表:

list1=['hello','world']
print list1
list2=[1,2,3]
print list2

输出:

['hello', 'world']
[1, 2, 3]

可以看到,这中创建方式非常类似于javascript中的数组。

(2)、list函数

通过list函数(其实list是一种类型而不是函数)对字符串创建列表非常有效:

list3=list("hello")
print list3

输出:

['h', 'e', 'l', 'l', 'o']

2、元组

元组与列表一样,也是一种序列,唯一不同的是元组不能被修改(字符串其实也有这种特点)。

(1)、创建

t1=1,2,3
t2="jeffreyzhao","cnblogs"
t3=(1,2,3,4)
t4=()
t5=(1,)
print t1,t2,t3,t4,t5

输出:

(1, 2, 3) ('jeffreyzhao', 'cnblogs') (1, 2, 3, 4) () (1,)

从上面我们可以分析得出:

a、逗号分隔一些值,元组自动创建完成;

b、元组大部分时候是通过圆括号括起来的;

c、空元组可以用没有包含内容的圆括号来表示;

d、只含一个值的元组,必须加个逗号(,);

(2)、tuple函数

tuple函数和序列的list函数几乎一样:以一个序列(注意是序列)作为参数并把它转换为元组。如果参数就算元组,那么该参数就会原样返回:

t1=tuple([1,2,3])
t2=tuple("jeff")
t3=tuple((1,2,3))
print t1
print t2
print t3
t4=tuple(123)
print t45

输出:

(1, 2, 3)
('j', 'e', 'f', 'f')
(1, 2, 3)

Traceback (most recent call last):
  File "F:\Python\test.py", line 7, in
    t4=tuple(123)
TypeError: 'int' object is not iterable

3、字符串

(1)创建

str1='Hello world'
print str1
print str1[0]
for c in str1:
  print c

输出:

Hello world
H
H
e
l
l
o
 
w
o
r
l
d

(2)格式化

字符串格式化使用字符串格式化操作符即百分号%来实现。

str1='Hello,%s' % 'world.'
print str1

格式化操作符的右操作数可以是任何东西,如果是元组或者映射类型(如字典),那么字符串格式化将会有所不同。

strs=('Hello','world') #元组
str1='%s,%s' % strs
print str1
d={'h':'Hello','w':'World'} #字典
str1='%(h)s,%(w)s' % d
print str1

输出:

Hello,world
Hello,World

注意:如果需要转换的元组作为转换表达式的一部分存在,那么必须将它用圆括号括起来

str1='%s,%s' % 'Hello','world'
print str1

输出:

Traceback (most recent call last):
 File "F:\Python\test.py", line 2, in <module>
  str1='%s,%s' % 'Hello','world'
TypeError: not enough arguments for format string

如果需要输出%这个特殊字符,毫无疑问,我们会想到转义,但是Python中正确的处理方式如下:

str1='%s%%' % 100
print str1

输出:

100%

对数字进行格式化处理,通常需要控制输出的宽度和精度

from math import pi
str1='%.2f' % pi #精度2
print str1
str1='%10f' % pi #字段宽10
print str1
str1='%10.2f' % pi #字段宽10,精度2
print str1

输出:

3.14
 3.141593
   3.14

字符串格式化还包含很多其他丰富的转换类型,可参考官方文档。

Python中在string模块还提供另外一种格式化值的方法:模板字符串。它的工作方式类似于很多UNIX Shell里的变量替换,如下所示:

from string import Template
str1=Template('$x,$y!')
str1=str1.substitute(x='Hello',y='world')
print str1

输出:

Hello,world!

如果替换字段是单词的一部分,那么参数名称就必须用括号括起来,从而准确指明结尾:

from string import Template
str1=Template('Hello,w${x}d!')
str1=str1.substitute(x='orl')
print str1

输出:

Hello,world!

如要输出$符,可以使用$$输出:

from string import Template
str1=Template('$x$$')
str1=str1.substitute(x='100')
print str1

输出:

100$

除了关键字参数之外,模板字符串还可以使用字典变量提供键值对进行格式化:

from string import Template
d={'h':'Hello','w':'world'}
str1=Template('$h,$w!')
str1=str1.substitute(d)
print str1

输出:

Hello,world!

除了格式化之外,Python字符串还内置了很多实用方法,可参考官方文档,这里不再列举。

4、通用序列操作(方法)

从列表、元组以及字符串可以“抽象”出序列的一些公共通用方法(不是你想像中的CRUD),这些操作包括:索引(indexing)、分片(sliceing)、加(adding)、乘(multiplying)以及检查某个元素是否属于序列的成员。除此之外,还有计算序列长度、最大最小元素等内置函数。

(1)索引

str1='Hello'
nums=[1,2,3,4]
t1=(123,234,345)
print str1[0]
print nums[1]
print t1[2]

输出

H
2
345

索引从0(从左向右)开始,所有序列可通过这种方式进行索引。神奇的是,索引可以从最后一个位置(从右向左)开始,编号是-1:

str1='Hello'
nums=[1,2,3,4]
t1=(123,234,345)
print str1[-1]
print nums[-2]
print t1[-3]

输出:

o
3
123

(2)分片

分片操作用来访问一定范围内的元素。分片通过冒号相隔的两个索引来实现:

nums=range(10)
print nums
print nums[1:5]
print nums[6:10]
print nums[1:]
print nums[-3:-1]
print nums[-3:] #包括序列结尾的元素,置空最后一个索引
print nums[:] #复制整个序列

输出:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[1, 2, 3, 4]
[6, 7, 8, 9]
[1, 2, 3, 4, 5, 6, 7, 8, 9]
[7, 8]
[7, 8, 9]

不同的步长,有不同的输出:

nums=range(10)
print nums
print nums[0:10] #默认步长为1 等价于nums[1:5:1]
print nums[0:10:2] #步长为2
print nums[0:10:3] #步长为3
 
##print nums[0:10:0] #步长为0
print nums[0:10:-2] #步长为-2

输出:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[0, 2, 4, 6, 8]
[0, 3, 6, 9]
[]

(3)序列相加

str1='Hello'
str2=' world'
print str1+str2
num1=[1,2,3]
num2=[2,3,4]
print num1+num2
print str1+num1

输出:

Hello world
[1, 2, 3, 2, 3, 4]

Traceback (most recent call last):
  File "F:\Python\test.py", line 7, in
    print str1+num1
TypeError: cannot concatenate 'str' and 'list' objects

(4)乘法

print [None]*10
str1='Hello'
print str1*2
num1=[1,2]
print num1*2
print str1*num1

输出:

[None, None, None, None, None, None, None, None, None, None]

HelloHello
[1, 2, 1, 2]

Traceback (most recent call last):
  File "F:\Python\test.py", line 5, in
    print str1*num1
TypeError: can't multiply sequence by non-int of type 'list'

(5)成员资格

in运算符会用来检查一个对象是否为某个序列(或者其他类型)的成员(即元素):

str1='Hello'
print 'h' in str1 
print 'H' in str1
num1=[1,2]
print 1 in num1

输出:

False
True
True

(6)长度、最大最小值

通过内建函数len、max和min可以返回序列中所包含元素的数量、最大和最小元素。

str1='Hello'
print len(str1) 
print max(str1)
print min(str1)
num1=[1,2,1,4,123]
print len(num1) 
print max(num1)
print min(num1)

输出:

5
o
H
5
123
1

二、映射(字典)

映射中的每个元素都有一个名字,如你所知,这个名字专业的名称叫键。字典(也叫散列表)是Python中唯一内建的映射类型。

1、键类型

字典的键可以是数字、字符串或者是元组,键必须唯一。在Python中,数字、字符串和元组都被设计成不可变类型,而常见的列表以及集合(set)都是可变的,所以列表和集合不能作为字典的键。键可以为任何不可变类型,这正是Python中的字典最强大的地方。

list1=["hello,world"]
set1=set([123])
d={}
d[1]=1
print d
d[list1]="Hello world."
d[set1]=123
print d

输出:

{1: 1}

Traceback (most recent call last):
  File "F:\Python\test.py", line 6, in
    d[list1]="Hello world."
TypeError: unhashable type: 'list'

2、自动添加

即使键在字典中并不存在,也可以为它分配一个值,这样字典就会建立新的项。

3、成员资格

表达式item in d(d为字典)查找的是键(containskey),而不是值(containsvalue)。

Python字典强大之处还包括内置了很多常用操作方法,可参考官方文档,这里不再列举。

思考:根据我们使用强类型语言的经验,比如C#和Java,我们肯定会问Python中的字典是线程安全的吗?

三、集合

集合(Set)在Python 2.3引入,通常使用较新版Python可直接创建,如下所示:

strs=set(['jeff','wong','cnblogs'])
nums=set(range(10))

看上去,集合就是由序列(或者其他可迭代的对象)构建的。集合的几个重要特点和方法如下:

1、副本是被忽略的

集合主要用于检查成员资格,因此副本是被忽略的,如下示例所示,输出的集合内容是一样的。

set1=set([0,1,2,3,0,1,2,3,4,5])
print set1
 
set2=set([0,1,2,3,4,5])
print set2

输出如下:

set([0, 1, 2, 3, 4, 5])
set([0, 1, 2, 3, 4, 5])

2、集合元素的顺序是随意的

这一点和字典非常像,可以简单理解集合为没有value的字典。

strs=set(['jeff','wong','cnblogs'])
print strs

输出如下:

set(['wong', 'cnblogs', 'jeff'])

3、集合常用方法

a、交集union

set1=set([1,2,3])
set2=set([2,3,4])
set3=set1.union(set2)
print set1
print set2
print set3

输出:

set([1, 2, 3])
set([2, 3, 4])
set([1, 2, 3, 4])

union操作返回两个集合的并集,不改变原有集合。使用按位与(OR)运算符“|”可以得到一样的结果:

set1=set([1,2,3])
set2=set([2,3,4])
set3=set1|set2
print set1
print set2
print set3

输出和上面union操作一模一样的结果。

其他常见操作包括&(交集),=,-,copy()等等,这里不再列举。

set1=set([1,2,3])
set2=set([2,3,4])
set3=set1&set2
print set1
print set2
print set3
print set3.issubset(set1)
set4=set1.copy()
print set4
print set4 is set1

输出如下:

set([1, 2, 3])
set([2, 3, 4])
set([2, 3])
True
set([1, 2, 3])
False

b、add和remove

和序列添加和移除的方法非常类似,可参考官方文档:

set1=set([1])
print set1
set1.add(2)
print set1
set1.remove(2)
print set1
print set1
print 29 in set1
set1.remove(29) #移除不存在的项

输出:

set([1])
set([1, 2])
set([1])
set([1])
False

Traceback (most recent call last):
  File "F:\Python\test.py", line 9, in
    set1.remove(29) #移除不存在的项
KeyError: 29

4、frozenset

集合是可变的,所以不能用做字典的键。集合本身只能包含不可变值,所以也就不能包含其他集合:

set1=set([1])
set2=set([2])
set1.add(set2)

输出如下:

Traceback (most recent call last):
  File "F:\Python\test.py", line 3, in
    set1.add(set2)
TypeError: unhashable type: 'set'

可以使用frozenset类型用于代表不可变(可散列)的集合:

set1=set([1])
set2=set([2])
set1.add(frozenset(set2))
print set1

输出:

set([1, frozenset([2])])
陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
Python vs. C:了解關鍵差異Python vs. C:了解關鍵差異Apr 21, 2025 am 12:18 AM

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。

Python vs.C:您的項目選擇哪種語言?Python vs.C:您的項目選擇哪種語言?Apr 21, 2025 am 12:17 AM

選擇Python還是C 取決於項目需求:1)如果需要快速開發、數據處理和原型設計,選擇Python;2)如果需要高性能、低延遲和接近硬件的控制,選擇C 。

達到python目標:每天2小時的力量達到python目標:每天2小時的力量Apr 20, 2025 am 12:21 AM

通過每天投入2小時的Python學習,可以有效提升編程技能。 1.學習新知識:閱讀文檔或觀看教程。 2.實踐:編寫代碼和完成練習。 3.複習:鞏固所學內容。 4.項目實踐:應用所學於實際項目中。這樣的結構化學習計劃能幫助你係統掌握Python並實現職業目標。

最大化2小時:有效的Python學習策略最大化2小時:有效的Python學習策略Apr 20, 2025 am 12:20 AM

在兩小時內高效學習Python的方法包括:1.回顧基礎知識,確保熟悉Python的安裝和基本語法;2.理解Python的核心概念,如變量、列表、函數等;3.通過使用示例掌握基本和高級用法;4.學習常見錯誤與調試技巧;5.應用性能優化與最佳實踐,如使用列表推導式和遵循PEP8風格指南。

在Python和C之間進行選擇:適合您的語言在Python和C之間進行選擇:適合您的語言Apr 20, 2025 am 12:20 AM

Python適合初學者和數據科學,C 適用於系統編程和遊戲開發。 1.Python簡潔易用,適用於數據科學和Web開發。 2.C 提供高性能和控制力,適用於遊戲開發和系統編程。選擇應基於項目需求和個人興趣。

Python與C:編程語言的比較分析Python與C:編程語言的比較分析Apr 20, 2025 am 12:14 AM

Python更適合數據科學和快速開發,C 更適合高性能和系統編程。 1.Python語法簡潔,易於學習,適用於數據處理和科學計算。 2.C 語法複雜,但性能優越,常用於遊戲開發和系統編程。

每天2小時:Python學習的潛力每天2小時:Python學習的潛力Apr 20, 2025 am 12:14 AM

每天投入兩小時學習Python是可行的。 1.學習新知識:用一小時學習新概念,如列表和字典。 2.實踐和練習:用一小時進行編程練習,如編寫小程序。通過合理規劃和堅持不懈,你可以在短時間內掌握Python的核心概念。

Python與C:學習曲線和易用性Python與C:學習曲線和易用性Apr 19, 2025 am 12:20 AM

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

SublimeText3 英文版

SublimeText3 英文版

推薦:為Win版本,支援程式碼提示!

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

mPDF

mPDF

mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境