上一篇文章,我們講解了影像處理中的亮度和對比度的變化,這篇文章我們來做一個閾值函數。
最簡單的影像分割方法
閾值是最簡單的影像分割方法。
例如為了從下圖中分割出蘋果,我們利用前景與背景的灰度差值,透過設定一個閾值,對於該像素大於這個閾值時就以黑色表示,小於便以灰色表示。
五種閾值類型
和OpenCV一樣,我們將提供五種閾值類型,方便使用。
下面是原始影像的波形表示,縱座標表示像素點的灰階值大小,藍線是閾值大小。
公式表示是:
影像表示是:
可見超過該閾值的就變成最大值(即255),否則變成最小值(也就是0)。我們需要一個函數來實現這個功能:
varvar_varS_MBI_var function(__value, __thresh, __maxVal){
return __value > __thresh ? __maxVal : 0;
};
反二進位閾值
公式表示是:
texttt{thresh}$}{texttt{maxVal}}{otherwise}" src="http://files.jb51.net/file_images/article/201301/2013010314344055.png">
這個則反過來,超過閾值的變成最小值,否則變成最大值。函數實作是:
};
公式表示是:
texttt{thresh}$}{texttt{src}(x,y)}{otherwise}" src="http://files.jb51.net/file_images/article/201301/2013010314344057.png" >
可見這個是超過閾值的就被截斷。函數實作是:
};
閾值化為0
公式表示是:
影像表示是:
這個則是小於閾值的都化為0處理。函數實作:
var CV_THRESH_TOZERO = function(
return __value > __thresh ? __value : 0;
};
反閾值化為0
公式表示是:
影像表示是:
這個則在超過閾值時候置為0,函數實作是:
var CV_THRESH_TOZERO_INV = function(__value, __thresh, __maxVal){
return __value > __thresh ? 0 : __value;
};
然後我們做一個函數對整幅圖進行上面這幾種類型的閾值處理。
複製程式碼
height = __src.row,
sData = __src.data,
dst = __dst || new Mat(height, width, CV_GRAY),
Data = dst.data,
maxVal = __maxVal || 255,
threshouldType = __thresholdType || CV_THRESH_BINARY;
var i, j, offset;
var i, j, offset;
var i, j, offset;
for(j = width; j--;){
offset = i * width j;
dData[offset] = threshouldType(sData[offset], __thresh, maxVal);
}
}
}else{
error(arguments.callee, UNSPPORT_DATA_TYPE/* {line} */);
}
return dst
};
這個函數比較簡單,就是對每個像素點賦值為 程式碼如下:
threshouldType(sData[offset], __thresh, maxVal)
傳回的數值。

图像锐化是一种常用的图像处理技术,它能够使图片变得更加清晰和细节明显。在Python中,我们可以使用一些常见的图像处理库来实现图像锐化功能。本文将介绍如何使用Python中的Pillow库、OpenCV库和Scikit-Image库进行图像锐化。使用Pillow库进行图像锐化Pillow库是Python中常用的图像处理库,其提供了PIL(PythonIma

图像处理已经成为我们日常生活中不可或缺的一部分,涉及到社交媒体和医学成像等各个领域。通过数码相机或卫星照片和医学扫描等其他来源获得的图像可能需要预处理以消除或增强噪声。频域滤波是一种可行的解决方案,它可以在增强图像锐化的同时消除噪声。快速傅里叶变换(FFT)是一种将图像从空间域变换到频率域的数学技术,是图像处理中进行频率变换的关键工具。通过利用图像的频域表示,我们可以根据图像的频率内容有效地分析图像,从而简化滤波程序的应用以消除噪声。本文将讨论图像从FFT到逆FFT的频率变换所涉及的各个阶段,并

在当今数字化时代,图像处理技术已成为了一种必备的技能,而人脸识别技术则被广泛应用于各行各业。其中,PHP作为一门广泛应用于web开发的脚本语言,其在人脸识别和图像处理应用开发方面的技术初步成熟,而其开发工具和框架也在不断发展。本文将给大家介绍PHP中如何进行图像处理和人脸识别技术的应用开发。I.图像处理应用开发GD库GD库是PHP中非常重要的一个图像处理工

作为一门高效的编程语言,Go在图像处理领域也有着不错的表现。虽然Go本身的标准库中没有提供专门的图像处理相关的API,但是有一些优秀的第三方库可以供我们使用,比如GoCV、ImageMagick和GraphicsMagick等。本文将重点介绍使用GoCV进行图像处理的方法。GoCV是一个高度依赖于OpenCV的Go语言绑定库,其

PHP是一种广泛使用的开放源代码的服务器端编程语言。它在网站开发二维图形处理和图片渲染技术方面广受欢迎。要实现有关图像和视觉数据的处理,我们可以使用GoogleCloudVisionAPI以及PHP。GoogleCloudVisionAPI是一个灵活的计算机视觉API,它可以帮助开发者更轻松地构建各种机器视觉应用程序。它支持图像标记、面部识别、文

Java语言中的图像处理算法介绍随着数字化时代的到来,图像处理已经成为了计算机科学中的一个重要分支。在计算机中,图像是以数字形式存储的,而图像处理则是通过对这些数字进行一系列的算法运算,改变图像的质量和外观。Java语言作为一种跨平台的编程语言,其丰富的图像处理库和强大的算法支持,使得它成为了很多开发者的首选。本文将介绍Java语言中常用的图像处理算法,以及

当今世界充满了各种数据,而图像是其中高的重要组成部分。然而,若想其有所应用,我们需要对这些图像进行处理。图像处理是分析和操纵数字图像的过程,旨在提高其质量或从中提取一些信息,然后将其用于某些方面。图像处理中的常见任务包括显示图像,基本操作(如裁剪、翻转、旋转等),图像分割,分类和特征提取,图像恢复和图像识别等。Python之成为图像处理任务的最佳选择,是因为这一科学编程语言日益普及,并且其自身免费提供许多最先进的图像处理工具。让我们看一下用于图像处理任务的一些常用Python库。1、scikit

PHP是一种非常流行的服务器端编程语言,它被广泛用于Web开发。在Web开发中,图像处理是一个非常常见的需求,而在PHP中实现图像处理也是很简单的。本文将简要介绍PHP图像处理的入门指南。一、环境要求要使用PHP图像处理,首先需要PHPGD库的支持。该库提供了将图像写入文件或输出到浏览器的功能、裁剪和缩放图像、添加文字、以及使图像变为灰度或反转等功能。因此


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

MantisBT
Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

SublimeText3 英文版
推薦:為Win版本,支援程式碼提示!

禪工作室 13.0.1
強大的PHP整合開發環境