搜尋
首頁後端開發Python教學如何提升jieba分詞效果以更好地提取景區評論中的關鍵詞?

如何提升jieba分詞效果以更好地提取景區評論中的關鍵詞?

提升Jieba分詞及景區評論關鍵詞提取的策略

許多人使用Jieba進行中文分詞,並結合LDA模型提取景區評論主題關鍵詞,但分詞效果常常影響最終結果的準確性。例如,直接使用Jieba分詞再進行LDA建模,提取出的主題關鍵詞可能存在分詞錯誤。

以下代碼示例展示了這一問題:

 # 加載中文停用詞stop_words = set(stopwords.words('chinese'))
broadcastVar = spark.sparkContext.broadcast(stop_words)

# 中文文本分詞def tokenize(text):
    return list(jieba.cut(text))

# 刪除中文停用詞def delete_stopwords(tokens, stop_words):
    filtered_words = [word for word in tokens if word not in stop_words]
    filtered_text = ' '.join(filtered_words)
    return filtered_text

# 刪除標點符號和特定字符def remove_punctuation(input_string):
    punctuation = string.punctuation "!?。。"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—''‛“”„‟…‧﹏.\t \n很好是去還不人太都中"
    translator = str.maketrans('', '', punctuation)
    no_punct = input_string.translate(translator)
    return no_punct

def Thematic_focus(text):
    from gensim import corpora, models
    num_words = min(len(text) // 50 3, 10) # 動態調整主題詞數量tokens = tokenize(text)
    stop_words = broadcastVar.value
    text = delete_stopwords(tokens, stop_words)
    text = remove_punctuation(text)
    tokens = tokenize(text)

    dictionary = corpora.Dictionary([tokens])
    corpus = [dictionary.doc2bow(tokens)]
    lda_model = models.LdaModel(corpus, num_topics=1, id2word=dictionary, passes=50)
    topics = lda_model.show_topics(num_words=num_words)
    for topic in topics:
        return str(topic)

為了改進分詞效果和關鍵詞提取,建議採取以下策略:

  1. 構建自定義詞庫:蒐集旅遊相關的專業詞彙,構建自定義詞庫並加載到Jieba中,提高對旅遊領域術語的識別準確率。這比依賴通用詞庫更有效。

  2. 優化停用詞詞庫:使用更全面的停用詞庫,或根據景區評論的特點,構建自定義停用詞庫,去除乾擾詞,提升LDA模型的準確性。 考慮使用GitHub上公開的停用詞庫作為基礎,並根據實際情況進行增刪。

通過以上方法,可以顯著提升Jieba分詞的準確性,從而更有效地提取景區評論中的關鍵詞,最終得到更準確的主題模型和詞云圖。 代碼中也對主題詞數量進行了動態調整,避免過少或過多主題詞影響結果。

以上是如何提升jieba分詞效果以更好地提取景區評論中的關鍵詞?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
列表和陣列之間的選擇如何影響涉及大型數據集的Python應用程序的整體性能?列表和陣列之間的選擇如何影響涉及大型數據集的Python應用程序的整體性能?May 03, 2025 am 12:11 AM

ForhandlinglargedatasetsinPython,useNumPyarraysforbetterperformance.1)NumPyarraysarememory-efficientandfasterfornumericaloperations.2)Avoidunnecessarytypeconversions.3)Leveragevectorizationforreducedtimecomplexity.4)Managememoryusagewithefficientdata

說明如何將內存分配給Python中的列表與數組。說明如何將內存分配給Python中的列表與數組。May 03, 2025 am 12:10 AM

Inpython,ListSusedynamicMemoryAllocationWithOver-Asalose,而alenumpyArraySallaySallocateFixedMemory.1)listssallocatemoremoremoremorythanneededinentientary上,respizeTized.2)numpyarsallaysallaysallocateAllocateAllocateAlcocateExactMemoryForements,OfferingPrediCtableSageButlessemageButlesseflextlessibility。

您如何在Python數組中指定元素的數據類型?您如何在Python數組中指定元素的數據類型?May 03, 2025 am 12:06 AM

Inpython,YouCansspecthedatatAtatatPeyFelemereModeRernSpant.1)Usenpynernrump.1)Usenpynyp.dloatp.dloatp.ploatm64,formor professisconsiscontrolatatypes。

什麼是Numpy,為什麼對於Python中的數值計算很重要?什麼是Numpy,為什麼對於Python中的數值計算很重要?May 03, 2025 am 12:03 AM

NumPyisessentialfornumericalcomputinginPythonduetoitsspeed,memoryefficiency,andcomprehensivemathematicalfunctions.1)It'sfastbecauseitperformsoperationsinC.2)NumPyarraysaremorememory-efficientthanPythonlists.3)Itoffersawiderangeofmathematicaloperation

討論'連續內存分配”的概念及其對數組的重要性。討論'連續內存分配”的概念及其對數組的重要性。May 03, 2025 am 12:01 AM

Contiguousmemoryallocationiscrucialforarraysbecauseitallowsforefficientandfastelementaccess.1)Itenablesconstanttimeaccess,O(1),duetodirectaddresscalculation.2)Itimprovescacheefficiencybyallowingmultipleelementfetchespercacheline.3)Itsimplifiesmemorym

您如何切成python列表?您如何切成python列表?May 02, 2025 am 12:14 AM

SlicingaPythonlistisdoneusingthesyntaxlist[start:stop:step].Here'showitworks:1)Startistheindexofthefirstelementtoinclude.2)Stopistheindexofthefirstelementtoexclude.3)Stepistheincrementbetweenelements.It'susefulforextractingportionsoflistsandcanuseneg

在Numpy陣列上可以執行哪些常見操作?在Numpy陣列上可以執行哪些常見操作?May 02, 2025 am 12:09 AM

numpyallowsforvariousoperationsonArrays:1)basicarithmeticlikeaddition,減法,乘法和division; 2)evationAperationssuchasmatrixmultiplication; 3)element-wiseOperations wiseOperationswithOutexpliitloops; 4)

Python的數據分析中如何使用陣列?Python的數據分析中如何使用陣列?May 02, 2025 am 12:09 AM

Arresinpython,尤其是Throughnumpyandpandas,weessentialFordataAnalysis,offeringSpeedAndeffied.1)NumpyArseNable efflaysenable efficefliceHandlingAtaSetSetSetSetSetSetSetSetSetSetSetsetSetSetSetSetsopplexoperationslikemovingaverages.2)

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

EditPlus 中文破解版

EditPlus 中文破解版

體積小,語法高亮,不支援程式碼提示功能

SecLists

SecLists

SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

WebStorm Mac版

WebStorm Mac版

好用的JavaScript開發工具

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強大的PHP整合開發環境