即使是最基本的數學運算有時也會產生錯誤的結果。這是由於存儲某些數字的精確值存在限製造成的。您可以通過使用Python中的decimal
模塊來克服這些限制。同樣,我們在上一個教程中學到的math
和cmath
模塊都不能幫助我們進行基於分數的算術運算。但是,Python中的fractions
模塊恰好可以做到這一點。
本教程將介紹這兩個模塊以及它們提供的不同函數。
使用Decimal模塊
from decimal import Decimal Decimal(121) # 返回 Decimal('121') Decimal(0.05) # 返回 Decimal('0.05000000000000000277555756') Decimal('0.05') # 返回 Decimal('0.05') Decimal((0, (8, 3, 2, 4), -3)) # 返回 Decimal('8.324') Decimal((1, (8, 3, 2, 4), -1)) # 返回 Decimal('-832.4')
如您所見,getcontext()
函數的值決定了計算的精度、舍入規則和異常引發行為。
您可以使用setcontext()
函數獲取和設置計算的當前上下文。使用with
語句可以臨時更改計算的上下文。
模塊中有三個內置上下文可用於計算:ROUND_HALF_UP
、ROUND_HALF_EVEN
和ROUND_HALF_EVEN
作為其舍入算法。這些上下文之間的另一個區別是異常引發行為。 DefaultContext
不會引發與數值溢出、無效操作和除以零相關的異常。 BasicContext
啟用了幾乎所有異常,非常適合調試,而DefaultContext
用作計算的默認上下文。
以下是如何使用不同的上下文來獲取簡單除法的不同結果的示例:
import decimal from decimal import ROUND_DOWN, ROUND_UP, Decimal as D dec_a = D('0.153') dec_b = D('0.231') zero = D('0') print("无上下文(使用默认值): ", dec_a/dec_b) # 无上下文(使用默认值): 0.6623376623376623376623376623 decimal.setcontext(decimal.BasicContext) print("基本上下文: ", dec_a/dec_b) # 基本上下文: 0.662337662 decimal.setcontext(decimal.ExtendedContext) print("扩展上下文: ", dec_a/dec_b) # 扩展上下文: 0.662337662 print("扩展上下文: ", dec_b/zero) # 扩展上下文: Infinity decimal.setcontext(decimal.DefaultContext) print("默认上下文: ", dec_a/dec_b) # 默认上下文: 0.6623376623376623376623376623 with decimal.localcontext() as l_ctx: l_ctx.prec = 5 l_ctx.rounding = ROUND_UP print("局部上下文: ", dec_a/dec_b) # 局部上下文: 0.66234
除了注意到不同上下文的精度和舍入算法的差異外,您可能還觀察到,在ExtendedContext
下,0 的除法結果為Infinity
。
decimal
模塊中的許多函數也接受上下文對像作為參數來執行其計算。這樣,您可以避免不斷設置計算的上下文或精度值。
import decimal from decimal import Decimal as D print(D('22').sqrt(decimal.BasicContext)) # 4.69041576 print(D('22').sqrt(decimal.ExtendedContext)) # 4.69041576 print(D('22').sqrt(decimal.DefaultContext)) # 4.690415759823429554565630114 with decimal.localcontext() as l_ctx: l_ctx.prec = 5 print(D('22').sqrt(l_ctx)) # 4.6904
使用Fractions模塊
有時,您可能會遇到需要對分數執行各種運算或最終結果需要是一個分數的情況。 fractions
模塊在這種情況下可以提供很大的幫助。
創建分數
fractions
模塊允許您從數字、浮點數、十進制數甚至字符串創建Fraction
實例。與decimal
模塊一樣,當從浮點數創建分數時,此模塊也存在一些問題。以下是一些示例:
from fractions import Fraction from decimal import Decimal Fraction(11, 35) # 返回 Fraction(11, 35) Fraction(10, 18) # 返回 Fraction(5, 9) Fraction('8/25') # 返回 Fraction(8, 25) Fraction(1.13) # 返回 Fraction(1272266894732165, 1125899906842624) Fraction('1.13') # 返回 Fraction(113, 100) Fraction(Decimal('1.13')) # 返回 Fraction(113, 100)
分數的算術運算
您還可以像普通數字一樣對分數執行簡單的數學運算,如加法和減法。
from decimal import Decimal Decimal(121) # 返回 Decimal('121') Decimal(0.05) # 返回 Decimal('0.05000000000000000277555756') Decimal('0.05') # 返回 Decimal('0.05') Decimal((0, (8, 3, 2, 4), -3)) # 返回 Decimal('8.324') Decimal((1, (8, 3, 2, 4), -1)) # 返回 Decimal('-832.4')
分子和分母函數
該模塊還有一些重要的方法,例如limit_denominator(max_denominator)
,它將找到並返回一個最接近給定分數的值的分數,其分母最多為max_denominator
。您還可以使用numerator
屬性返回給定分數的分子(以最低項表示),使用denominator
屬性返回分母。
import decimal from decimal import ROUND_DOWN, ROUND_UP, Decimal as D dec_a = D('0.153') dec_b = D('0.231') zero = D('0') print("无上下文(使用默认值): ", dec_a/dec_b) # 无上下文(使用默认值): 0.6623376623376623376623376623 decimal.setcontext(decimal.BasicContext) print("基本上下文: ", dec_a/dec_b) # 基本上下文: 0.662337662 decimal.setcontext(decimal.ExtendedContext) print("扩展上下文: ", dec_a/dec_b) # 扩展上下文: 0.662337662 print("扩展上下文: ", dec_b/zero) # 扩展上下文: Infinity decimal.setcontext(decimal.DefaultContext) print("默认上下文: ", dec_a/dec_b) # 默认上下文: 0.6623376623376623376623376623 with decimal.localcontext() as l_ctx: l_ctx.prec = 5 l_ctx.rounding = ROUND_UP print("局部上下文: ", dec_a/dec_b) # 局部上下文: 0.66234
分數和math模塊
您還可以將此模塊與math
模塊中的各種函數一起使用來執行基於分數的計算。
import decimal from decimal import Decimal as D print(D('22').sqrt(decimal.BasicContext)) # 4.69041576 print(D('22').sqrt(decimal.ExtendedContext)) # 4.69041576 print(D('22').sqrt(decimal.DefaultContext)) # 4.690415759823429554565630114 with decimal.localcontext() as l_ctx: l_ctx.prec = 5 print(D('22').sqrt(l_ctx)) # 4.6904
總結
這兩個模塊應該足以幫助您對十進制數和分數執行常見運算。如最後一節所示,您可以將這些模塊與math
模塊一起使用,以您希望的格式計算各種數學函數的值。
在本系列的下一個教程中,您將學習Python中的random
模塊。
以上是Python中的數學模塊:十進制和分數的詳細內容。更多資訊請關注PHP中文網其他相關文章!

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。

選擇Python還是C 取決於項目需求:1)如果需要快速開發、數據處理和原型設計,選擇Python;2)如果需要高性能、低延遲和接近硬件的控制,選擇C 。

通過每天投入2小時的Python學習,可以有效提升編程技能。 1.學習新知識:閱讀文檔或觀看教程。 2.實踐:編寫代碼和完成練習。 3.複習:鞏固所學內容。 4.項目實踐:應用所學於實際項目中。這樣的結構化學習計劃能幫助你係統掌握Python並實現職業目標。

在兩小時內高效學習Python的方法包括:1.回顧基礎知識,確保熟悉Python的安裝和基本語法;2.理解Python的核心概念,如變量、列表、函數等;3.通過使用示例掌握基本和高級用法;4.學習常見錯誤與調試技巧;5.應用性能優化與最佳實踐,如使用列表推導式和遵循PEP8風格指南。

Python適合初學者和數據科學,C 適用於系統編程和遊戲開發。 1.Python簡潔易用,適用於數據科學和Web開發。 2.C 提供高性能和控制力,適用於遊戲開發和系統編程。選擇應基於項目需求和個人興趣。

Python更適合數據科學和快速開發,C 更適合高性能和系統編程。 1.Python語法簡潔,易於學習,適用於數據處理和科學計算。 2.C 語法複雜,但性能優越,常用於遊戲開發和系統編程。

每天投入兩小時學習Python是可行的。 1.學習新知識:用一小時學習新概念,如列表和字典。 2.實踐和練習:用一小時進行編程練習,如編寫小程序。通過合理規劃和堅持不懈,你可以在短時間內掌握Python的核心概念。

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

SublimeText3 英文版
推薦:為Win版本,支援程式碼提示!

mPDF
mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

Atom編輯器mac版下載
最受歡迎的的開源編輯器