Python 列表推導式提供了一種簡潔的編寫代碼方式,它允許您同時計算表達式的值並將其賦值給變量。使用 walrus 運算符(:=),我們可以優化代碼:
square_cubes = [res if (res := n**2) % 9 == 0 or res % 4 == 0 else n**3 for n in range(1, 11)] print(square_cubes) # 输出: [1, 4, 9, 16, 125, 36, 343, 64, 81, 100]
這裡,我們將 res
變量存儲計算結果 n**2
,並在後續代碼中復用,避免重複計算。
嵌套循環的列表推導式
列表推導式支持嵌套循環,for
循環數量沒有限制。但需注意,循環順序需與原始代碼一致。每個 for
循環後還可以添加可選的 if
條件。嵌套 for
循環的列表推導式結構如下:
[ for in (可选 if ) for in (可选 if ) for in (可选 if ) ... ]
以下示例演示了嵌套循環的列表推導式,用於生成乘法表:
multiplications = [] for i in range(1, 4): for n in range(1, 11): multiplications.append(i*n) print(multiplications) # 输出: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30]
將其轉換為列表推導式:
multiplications = [i*n for i in range(1,4) for n in range(1,11)] print(multiplications) # 输出: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30]
列表推導式還可以用於扁平化嵌套列表:
matrix = [ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], ] flatten = [n for row in matrix for n in row] print(flatten) # 输出: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
嵌套列表推導式
嵌套列表推導式與嵌套循環的列表推導式不同。前者是推導式內部嵌套推導式,後者是循環內部嵌套循環。例如,矩陣轉置:
使用普通循環:
matrix = [ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], ] transpose = [] for i in range(4): temp = [] for row in matrix: temp.append(row[i]) transpose.append(temp) print(transpose) # 输出: [[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]
使用嵌套列表推導式:
matrix = [ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], ] transpose = [[row[n] for row in matrix] for n in range(4)] print(transpose) # 输出: [[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]
集合和字典推導式
列表推導式的概念也適用於集合和字典推導式。字典用於存儲鍵值對:
squares_cubes = {n: n**2 if n%2 == 0 else n**3 for n in range(1,11)} print(squares_cubes) # 输出: {1: 1, 2: 4, 3: 27, 4: 16, 5: 125, 6: 36, 7: 343, 8: 64, 9: 729, 10: 100}
集合推導式用於創建無序集合:
import random non_multiples = {n for n in random.sample(range(0, 1001), 20) if n not in range(0, 1001, 9)} print(non_multiples) # 输出 (示例): {3, 165, 807, 574, 745, 266, 616, 44, 12, 910, 336, 145, 755, 179, 25, 796, 926}
總結
本文介紹了 Python 列表推導式及其在代碼優化中的應用,包括嵌套循環、嵌套推導式以及集合和字典推導式。 需要注意的是,對於復雜的嵌套循環,為了提高代碼可讀性,可以將列表推導式拆分成多行。 建議根據實際情況選擇合適的方法,兼顧代碼效率和可讀性。
以上是列出Python中的綜合的詳細內容。更多資訊請關注PHP中文網其他相關文章!

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。

選擇Python還是C 取決於項目需求:1)如果需要快速開發、數據處理和原型設計,選擇Python;2)如果需要高性能、低延遲和接近硬件的控制,選擇C 。

通過每天投入2小時的Python學習,可以有效提升編程技能。 1.學習新知識:閱讀文檔或觀看教程。 2.實踐:編寫代碼和完成練習。 3.複習:鞏固所學內容。 4.項目實踐:應用所學於實際項目中。這樣的結構化學習計劃能幫助你係統掌握Python並實現職業目標。

在兩小時內高效學習Python的方法包括:1.回顧基礎知識,確保熟悉Python的安裝和基本語法;2.理解Python的核心概念,如變量、列表、函數等;3.通過使用示例掌握基本和高級用法;4.學習常見錯誤與調試技巧;5.應用性能優化與最佳實踐,如使用列表推導式和遵循PEP8風格指南。

Python適合初學者和數據科學,C 適用於系統編程和遊戲開發。 1.Python簡潔易用,適用於數據科學和Web開發。 2.C 提供高性能和控制力,適用於遊戲開發和系統編程。選擇應基於項目需求和個人興趣。

Python更適合數據科學和快速開發,C 更適合高性能和系統編程。 1.Python語法簡潔,易於學習,適用於數據處理和科學計算。 2.C 語法複雜,但性能優越,常用於遊戲開發和系統編程。

每天投入兩小時學習Python是可行的。 1.學習新知識:用一小時學習新概念,如列表和字典。 2.實踐和練習:用一小時進行編程練習,如編寫小程序。通過合理規劃和堅持不懈,你可以在短時間內掌握Python的核心概念。

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境

mPDF
mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

PhpStorm Mac 版本
最新(2018.2.1 )專業的PHP整合開發工具

Dreamweaver CS6
視覺化網頁開發工具