鑰匙要點
-
圖是用於建模密鑰/值對之間關係的數學結構,並具有許多真實的應用程序,例如網絡優化,流量路由和社交網絡分析。它們由連接它們的頂點(節點)和邊緣(線)組成,它們可以定向或無方向性,加權或未加權。
- > >圖形可以通過兩種方式表示:作為鄰接矩陣或鄰接列表。鄰接列表更具空間效率,尤其是對於大多數頂點沒有連接的稀疏圖,而鄰接矩陣則有助於更快地查找。
圖理論的常見應用是在任意兩個節點之間找到最少的啤酒花。與樹一樣,圖形可以通過以下兩種方式之一進行遍歷:深度優先或廣度優先。我們在上一篇文章中介紹了深度優先的搜索,因此讓我們看一下廣度優先的搜索。 考慮以下圖:
為了簡單起見,讓我們假設該圖是
1. Create a queue 2. Enqueue the root node and mark it as visited 3. While the queue is not empty do: 3a. dequeue the current node 3b. if the current node is the one we're looking for then stop 3c. else enqueue each unvisited adjacent node and mark as visited代表圖形
通常有兩種表示圖形的方法:作為鄰接矩陣或鄰接列表。上面的圖表示為鄰接列表,如下所示:
該圖表示為矩陣,其中1表示2個頂點之間的邊緣的“發生率”:
1. Create a queue 2. Enqueue the root node and mark it as visited 3. While the queue is not empty do: 3a. dequeue the current node 3b. if the current node is the one we're looking for then stop 3c. else enqueue each unvisited adjacent node and mark as visited現在,讓我們看看一般廣度優先搜索算法的實現是什麼樣的:
<span><span><?php </span></span><span><span>$graph = array( </span></span><span> <span>'A' => array('B', 'F'), </span></span><span> <span>'B' => array('A', 'D', 'E'), </span></span><span> <span>'C' => array('F'), </span></span><span> <span>'D' => array('B', 'E'), </span></span><span> <span>'E' => array('B', 'D', 'F'), </span></span><span> <span>'F' => array('A', 'E', 'C'), </span></span><span><span>);</span></span></span>運行以下示例,我們得到:
<span><span><?php </span></span><span><span>class Graph </span></span><span><span>{ </span></span><span> <span>protected $graph; </span></span><span> <span>protected $visited = array(); </span></span><span> </span><span> <span>public function __construct($graph) { </span></span><span> <span>$this->graph = $graph; </span></span><span> <span>} </span></span><span> </span><span> <span>// find least number of hops (edges) between 2 nodes </span></span><span> <span>// (vertices) </span></span><span> <span>public function breadthFirstSearch($origin, $destination) { </span></span><span> <span>// mark all nodes as unvisited </span></span><span> <span>foreach ($this->graph as $vertex => $adj) { </span></span><span> <span>$this->visited[$vertex] = false; </span></span><span> <span>} </span></span><span> </span><span> <span>// create an empty queue </span></span><span> <span>$q = new SplQueue(); </span></span><span> </span><span> <span>// enqueue the origin vertex and mark as visited </span></span><span> <span>$q->enqueue($origin); </span></span><span> <span>$this->visited[$origin] = true; </span></span><span> </span><span> <span>// this is used to track the path back from each node </span></span><span> <span>$path = array(); </span></span><span> <span>$path[$origin] = new SplDoublyLinkedList(); </span></span><span> <span>$path[$origin]->setIteratorMode( </span></span><span> <span>SplDoublyLinkedList<span>::</span>IT_MODE_FIFO|SplDoublyLinkedList<span>::</span>IT_MODE_KEEP </span></span><span> <span>); </span></span><span> </span><span> <span>$path[$origin]->push($origin); </span></span><span> </span><span> <span>$found = false; </span></span><span> <span>// while queue is not empty and destination not found </span></span><span> <span>while (!$q->isEmpty() && $q->bottom() != $destination) { </span></span><span> <span>$t = $q->dequeue(); </span></span><span> </span><span> <span>if (!empty($this->graph[$t])) { </span></span><span> <span>// for each adjacent neighbor </span></span><span> <span>foreach ($this->graph[$t] as $vertex) { </span></span><span> <span>if (!$this->visited[$vertex]) { </span></span><span> <span>// if not yet visited, enqueue vertex and mark </span></span><span> <span>// as visited </span></span><span> <span>$q->enqueue($vertex); </span></span><span> <span>$this->visited[$vertex] = true; </span></span><span> <span>// add vertex to current path </span></span><span> <span>$path[$vertex] = clone $path[$t]; </span></span><span> <span>$path[$vertex]->push($vertex); </span></span><span> <span>} </span></span><span> <span>} </span></span><span> <span>} </span></span><span> <span>} </span></span><span> </span><span> <span>if (isset($path[$destination])) { </span></span><span> <span>echo "<span><span>$origin</span> to <span>$destination</span> in "</span>, </span></span><span> <span>count($path[$destination]) - 1, </span></span><span> <span>" hopsn"; </span></span><span> <span>$sep = ''; </span></span><span> <span>foreach ($path[$destination] as $vertex) { </span></span><span> <span>echo $sep, $vertex; </span></span><span> <span>$sep = '->'; </span></span><span> <span>} </span></span><span> <span>echo "n"; </span></span><span> <span>} </span></span><span> <span>else { </span></span><span> <span>echo "No route from <span><span>$origin</span> to <span>$destinationn</span>"</span>; </span></span><span> <span>} </span></span><span> <span>} </span></span><span><span>}</span></span></span>如果我們使用堆棧而不是隊列,則遍歷將成為深度優先的搜索。
找到最短路徑
另一個常見的問題是找到任何兩個節點之間的最佳路徑。早些時候,我提到了GoogleMap的行駛方向,以此為例。其他應用程序包括規劃旅行行程,道路交通管理以及火車/公共汽車計劃。 解決此問題的最著名算法之一是由一位29歲的計算機科學家以Edsger W. Dijkstra的名義發明的。總的來說,Dijkstra的解決方案涉及檢查從源節點開始的所有可能的頂點之間的每個邊緣,並保持最短的總距離的更新的頂點,直到達到目標節點,或者無法達到目標節點,任何情況下的情況下。 有幾種方法可以實施該解決方案,實際上,在1959年,使用Minheaps,Priorityqueues和Fibonacci堆的多年以來,都對Dijkstra的原始算法做出了。一些改進的性能,而另一些則旨在解決Dijkstra解決方案中的缺點,因為它僅適用於正加權圖(權重為正值)。 這是一個(正)加權圖的示例:
1. Create a queue 2. Enqueue the root node and mark it as visited 3. While the queue is not empty do: 3a. dequeue the current node 3b. if the current node is the one we're looking for then stop 3c. else enqueue each unvisited adjacent node and mark as visited這是使用PriorityQueue來維護所有“不優化”頂點的列表的實現:
<span><span><?php </span></span><span><span>$graph = array( </span></span><span> <span>'A' => array('B', 'F'), </span></span><span> <span>'B' => array('A', 'D', 'E'), </span></span><span> <span>'C' => array('F'), </span></span><span> <span>'D' => array('B', 'E'), </span></span><span> <span>'E' => array('B', 'D', 'F'), </span></span><span> <span>'F' => array('A', 'E', 'C'), </span></span><span><span>);</span></span></span>如您所見,Dijkstra的解決方案只是廣度優先搜索的變體! 運行以下示例會產生以下結果:
<span><span><?php </span></span><span><span>class Graph </span></span><span><span>{ </span></span><span> <span>protected $graph; </span></span><span> <span>protected $visited = array(); </span></span><span> </span><span> <span>public function __construct($graph) { </span></span><span> <span>$this->graph = $graph; </span></span><span> <span>} </span></span><span> </span><span> <span>// find least number of hops (edges) between 2 nodes </span></span><span> <span>// (vertices) </span></span><span> <span>public function breadthFirstSearch($origin, $destination) { </span></span><span> <span>// mark all nodes as unvisited </span></span><span> <span>foreach ($this->graph as $vertex => $adj) { </span></span><span> <span>$this->visited[$vertex] = false; </span></span><span> <span>} </span></span><span> </span><span> <span>// create an empty queue </span></span><span> <span>$q = new SplQueue(); </span></span><span> </span><span> <span>// enqueue the origin vertex and mark as visited </span></span><span> <span>$q->enqueue($origin); </span></span><span> <span>$this->visited[$origin] = true; </span></span><span> </span><span> <span>// this is used to track the path back from each node </span></span><span> <span>$path = array(); </span></span><span> <span>$path[$origin] = new SplDoublyLinkedList(); </span></span><span> <span>$path[$origin]->setIteratorMode( </span></span><span> <span>SplDoublyLinkedList<span>::</span>IT_MODE_FIFO|SplDoublyLinkedList<span>::</span>IT_MODE_KEEP </span></span><span> <span>); </span></span><span> </span><span> <span>$path[$origin]->push($origin); </span></span><span> </span><span> <span>$found = false; </span></span><span> <span>// while queue is not empty and destination not found </span></span><span> <span>while (!$q->isEmpty() && $q->bottom() != $destination) { </span></span><span> <span>$t = $q->dequeue(); </span></span><span> </span><span> <span>if (!empty($this->graph[$t])) { </span></span><span> <span>// for each adjacent neighbor </span></span><span> <span>foreach ($this->graph[$t] as $vertex) { </span></span><span> <span>if (!$this->visited[$vertex]) { </span></span><span> <span>// if not yet visited, enqueue vertex and mark </span></span><span> <span>// as visited </span></span><span> <span>$q->enqueue($vertex); </span></span><span> <span>$this->visited[$vertex] = true; </span></span><span> <span>// add vertex to current path </span></span><span> <span>$path[$vertex] = clone $path[$t]; </span></span><span> <span>$path[$vertex]->push($vertex); </span></span><span> <span>} </span></span><span> <span>} </span></span><span> <span>} </span></span><span> <span>} </span></span><span> </span><span> <span>if (isset($path[$destination])) { </span></span><span> <span>echo "<span><span>$origin</span> to <span>$destination</span> in "</span>, </span></span><span> <span>count($path[$destination]) - 1, </span></span><span> <span>" hopsn"; </span></span><span> <span>$sep = ''; </span></span><span> <span>foreach ($path[$destination] as $vertex) { </span></span><span> <span>echo $sep, $vertex; </span></span><span> <span>$sep = '->'; </span></span><span> <span>} </span></span><span> <span>echo "n"; </span></span><span> <span>} </span></span><span> <span>else { </span></span><span> <span>echo "No route from <span><span>$origin</span> to <span>$destinationn</span>"</span>; </span></span><span> <span>} </span></span><span> <span>} </span></span><span><span>}</span></span></span>
摘要
在本文中,我介紹了圖理論的基礎知識,兩種表示圖形的方法以及圖理論應用中的兩個基本問題。我向您展示瞭如何使用廣度優先的搜索來找到任何兩個節點之間最少的啤酒花,以及如何使用Dijkstra的解決方案來找到任何兩個節點之間的最短路徑。 通過fotolia 圖像 經常詢問數據結構中圖的問題(常見問題解答)數據結構中的圖和樹之間有什麼區別?樹是一種類型,但並非所有圖形都是樹。樹是沒有任何週期的連接圖。它具有帶根節點和子節點的層次結構。樹上的每個節點都有一個獨特的路徑。另一方面,圖可以具有循環,其結構更為複雜。它可以連接或斷開連接,節點之間可以具有多個路徑。列表。鄰接矩陣是大小為v x v的2D數組,其中v是圖中的頂點數。如果頂點I和J之間有邊緣,則第I和J列的交點處的單元格為1,否則為0。鄰接列表是鏈接列表的數組。數組的索引代表一個頂點,其鏈接列表中的每個元素代表與頂點形成邊緣的其他頂點。是數據結構中幾種類型的圖形。一個簡單的圖是一個沒有循環的圖形,在任何兩個頂點之間不超過一個邊緣。多編碼可以在頂點之間具有多個邊緣。完整的圖是一個簡單的圖形,其中每對頂點都通過邊緣連接。加權圖為每個邊緣分配一個權重。有向圖(或Digraph)具有方向的邊緣。邊緣從一個頂點到另一個頂點。
>在計算機科學中的許多應用中,都使用了圖表中圖中圖的應用?它們在社交網絡中用於表示人們之間的聯繫。它們用於網絡爬行中訪問網頁並構建搜索索引。它們用於網絡路由算法中,以找到兩個節點之間的最佳路徑。它們在生物學中用於建模和分析生物網絡。它們也用於計算機圖形和物理模擬中。
>圖形遍曆算法是什麼? >有兩個主要的圖形遍曆算法:Depth-First Search(DFS)和廣度優先搜索(BFS)。 DFS在回溯之前盡可能沿每個分支探索。它使用堆棧數據結構。 BFS探索當前深度的所有頂點,然後才能進入下一個級別。它使用隊列數據結構。 如何在Java中實現圖形? hashmap中的每個鍵都是頂點,其值是一個鏈接列表,包含其連接到的頂點。>
>什麼是兩部分圖? 二鍵圖是一個圖形,是一個圖形的圖形。被分為兩個不相交的集合,使每個邊緣在一個集合中連接一個頂點與另一組頂點連接。沒有邊界在同一集合中連接頂點。 什麼是子圖? 一個子圖是一個圖形,是另一個圖的一部分。它具有原始圖的某些(或全部)頂點,以及原始圖的某些(或全)邊緣。>
>圖中的一個週期是什麼?一條從同一頂點開始和結束的路徑,至少具有一個邊。的連續的頂點通過邊緣連接。以上是PHP主| PHP DEV的數據結構:圖形的詳細內容。更多資訊請關注PHP中文網其他相關文章!

Laravel使用其直觀的閃存方法簡化了處理臨時會話數據。這非常適合在您的應用程序中顯示簡短的消息,警報或通知。 默認情況下,數據僅針對後續請求: $請求 -

PHP客戶端URL(curl)擴展是開發人員的強大工具,可以與遠程服務器和REST API無縫交互。通過利用Libcurl(備受尊敬的多協議文件傳輸庫),PHP curl促進了有效的執行

Laravel 提供简洁的 HTTP 响应模拟语法,简化了 HTTP 交互测试。这种方法显著减少了代码冗余,同时使您的测试模拟更直观。 基本实现提供了多种响应类型快捷方式: use Illuminate\Support\Facades\Http; Http::fake([ 'google.com' => 'Hello World', 'github.com' => ['foo' => 'bar'], 'forge.laravel.com' =>

您是否想為客戶最緊迫的問題提供實時的即時解決方案? 實時聊天使您可以與客戶進行實時對話,並立即解決他們的問題。它允許您為您的自定義提供更快的服務

文章討論了PHP 5.3中介紹的PHP中的晚期靜態結合(LSB),允許靜態方法的運行時間分辨率調用以更靈活的繼承。 LSB的實用應用和潛在的觸摸

PHP日誌記錄對於監視和調試Web應用程序以及捕獲關鍵事件,錯誤和運行時行為至關重要。它為系統性能提供了寶貴的見解,有助於識別問題並支持更快的故障排除

Laravel的服務容器和服務提供商是其架構的基礎。 本文探討了服務容器,詳細信息服務提供商創建,註冊,並通過示例演示了實際用法。 我們將從OVE開始


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

Dreamweaver Mac版
視覺化網頁開發工具

mPDF
mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

PhpStorm Mac 版本
最新(2018.2.1 )專業的PHP整合開發工具

SublimeText3漢化版
中文版,非常好用

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。