用Random
和OrderBy
進行列表洗牌的效率如何?
本文探討使用Random
和OrderBy
方法洗牌列表的效率問題。代碼示例如下:
var r = new Random(); var shuffled = ordered.OrderBy(x => r.Next());
代碼工作原理
這段代碼使用Random
類生成隨機數。對於ordered
列表中的每個元素,OrderBy
方法使用lambda表達式x => r.Next()
為其分配一個隨機數。然後,根據這些隨機數對列表進行升序排序,從而實現洗牌效果。
這種洗牌算法的效率如何?
雖然這段代碼可以實現洗牌的目的,但其效率存在問題。 OrderBy
方法底層使用了O(n log n)的排序算法,這對於洗牌任務來說過於復雜,因為洗牌只需要O(n)的時間複雜度。
更好的方法和考慮因素
更有效的洗牌算法是Fisher-Yates洗牌算法,它簡單易懂,並且具有O(n)的時間複雜度。為了方便和清晰,可以創建一個使用Fisher-Yates算法的Shuffle
擴展方法。
Fisher-Yates洗牌算法通過迭代列表,將元素與隨機選擇的前面元素交換來實現洗牌。下面是一個簡單的Shuffle
擴展方法(未包含錯誤檢查):
public static IEnumerable<T> Shuffle<T>(this IEnumerable<T> source, Random rng) { T[] elements = source.ToArray(); for (int i = elements.Length - 1; i > 0; i--) { int swapIndex = rng.Next(i + 1); T tmp = elements[i]; elements[i] = elements[swapIndex]; elements[swapIndex] = tmp; } foreach (T element in elements) { yield return element; } }
使用Fisher-Yates算法可以避免OrderBy
帶來的計算開銷,同時保持洗牌功能。
以上是是否使用' orderby”與`random”一種有效的方法來調整列表嗎?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

C 在現代世界中的應用廣泛且重要。 1)在遊戲開發中,C 因其高性能和多態性被廣泛使用,如UnrealEngine和Unity。 2)在金融交易系統中,C 的低延遲和高吞吐量使其成為首選,適用於高頻交易和實時數據分析。

C 中有四種常用的XML庫:TinyXML-2、PugiXML、Xerces-C 和RapidXML。 1.TinyXML-2適合資源有限的環境,輕量但功能有限。 2.PugiXML快速且支持XPath查詢,適用於復雜XML結構。 3.Xerces-C 功能強大,支持DOM和SAX解析,適用於復雜處理。 4.RapidXML專注於性能,解析速度極快,但不支持XPath查詢。

C 通過第三方庫(如TinyXML、Pugixml、Xerces-C )與XML交互。 1)使用庫解析XML文件,將其轉換為C 可處理的數據結構。 2)生成XML時,將C 數據結構轉換為XML格式。 3)在實際應用中,XML常用於配置文件和數據交換,提升開發效率。

C#和C 的主要區別在於語法、性能和應用場景。 1)C#語法更簡潔,支持垃圾回收,適用於.NET框架開發。 2)C 性能更高,需手動管理內存,常用於系統編程和遊戲開發。

C#和C 的歷史與演變各有特色,未來前景也不同。 1.C 由BjarneStroustrup在1983年發明,旨在將面向對象編程引入C語言,其演變歷程包括多次標準化,如C 11引入auto關鍵字和lambda表達式,C 20引入概念和協程,未來將專注於性能和系統級編程。 2.C#由微軟在2000年發布,結合C 和Java的優點,其演變注重簡潔性和生產力,如C#2.0引入泛型,C#5.0引入異步編程,未來將專注於開發者的生產力和雲計算。

C#和C 的学习曲线和开发者体验有显著差异。1)C#的学习曲线较平缓,适合快速开发和企业级应用。2)C 的学习曲线较陡峭,适用于高性能和低级控制的场景。

C#和C 在面向对象编程(OOP)中的实现方式和特性上有显著差异。1)C#的类定义和语法更为简洁,支持如LINQ等高级特性。2)C 提供更细粒度的控制,适用于系统编程和高性能需求。两者各有优势,选择应基于具体应用场景。

從XML轉換到C 並進行數據操作可以通過以下步驟實現:1)使用tinyxml2庫解析XML文件,2)將數據映射到C 的數據結構中,3)使用C 標準庫如std::vector進行數據操作。通過這些步驟,可以高效地處理和操作從XML轉換過來的數據。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Safe Exam Browser
Safe Exam Browser是一個安全的瀏覽器環境,安全地進行線上考試。該軟體將任何電腦變成一個安全的工作站。它控制對任何實用工具的訪問,並防止學生使用未經授權的資源。

Atom編輯器mac版下載
最受歡迎的的開源編輯器

EditPlus 中文破解版
體積小,語法高亮,不支援程式碼提示功能

SecLists
SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。