搜尋
首頁web前端js教程在瀏覽器中執行 DeepSeek-Rn:綜合指南

Running DeepSeek-Rn the Browser: A Comprehensive Guide

隨著人工智慧技術的不斷發展,直接在瀏覽器中運行複雜的機器學習模型正變得越來越可行。本指南將引導您學習如何使用 JavaScript 在瀏覽器中載入和使用 DeepSeek-R1 模型。我們還將介紹基於此處提供的範例的實作細節。

為什麼在瀏覽器中運行 NLP 模型?

傳統上,自然語言處理 (NLP) 模型部署在伺服器端,需要網路連線才能發送請求和接收回應。但是,隨著 WebGPU 和 ONNX.js 等技術的進步,現在可以在瀏覽器中直接執行 DeepSeek-R1 等高級模型。其優點包括:

  • 增強隱私性:使用者資料不會離開其裝置。
  • 降低延遲:消除了與伺服器通訊相關的延遲。
  • 離線可用性:即使沒有網路連線也能運作。

關於 DeepSeek-R1

DeepSeek-R1 是一款輕量級且高效的 NLP 模型,經過最佳化可在裝置上進行推理。它在保持較小佔用空間的同時,提供高品質的文字處理能力,使其成為瀏覽器環境的理想選擇。

設定您的項目

先決條件

要開始在瀏覽器中執行 DeepSeek-R1 模型,您需要:

  • 支援 WebGPU/WebGL 的現代瀏覽器。
  • 用於在 JavaScript 中執行 transformers 模型的 @huggingface/transformers 函式庫。
  • 包含載入和處理 DeepSeek-R1 模型邏輯的腳本檔。

示範:試試看!

實作細節

以下是關於如何在瀏覽器中載入和使用 DeepSeek-R1 模型的逐步指南:

import {
  AutoTokenizer,
  AutoModelForCausalLM,
  TextStreamer,
  InterruptableStoppingCriteria,
} from "@huggingface/transformers";

/**
 * 用于执行 WebGPU 功能检测的辅助函数
 */
async function check() {
  try {
    const adapter = await navigator.gpu.requestAdapter();
    if (!adapter) {
      throw new Error("WebGPU 不受支持(未找到适配器)");
    }
  } catch (e) {
    self.postMessage({
      status: "error",
      data: e.toString(),
    });
  }
}

/**
 * 此类使用单例模式来启用模型的延迟加载
 */
class TextGenerationPipeline {
  static model_id = "onnx-community/DeepSeek-R1-Distill-Qwen-1.5B-ONNX";

  static async getInstance(progress_callback = null) {
    if (!this.tokenizer) {
      this.tokenizer = await AutoTokenizer.from_pretrained(this.model_id, {
        progress_callback,
      });
    }

    if (!this.model) {
      this.model = await AutoModelForCausalLM.from_pretrained(this.model_id, {
        dtype: "q4f16",
        device: "webgpu",
        progress_callback,
      });
    }

    return [this.tokenizer, this.model];
  }
}

const stopping_criteria = new InterruptableStoppingCriteria();

let past_key_values_cache = null;

async function generate(messages) {
  // 获取文本生成管道。
  const [tokenizer, model] = await TextGenerationPipeline.getInstance();

  const inputs = tokenizer.apply_chat_template(messages, {
    add_generation_prompt: true,
    return_dict: true,
  });

  const [START_THINKING_TOKEN_ID, END_THINKING_TOKEN_ID] = tokenizer.encode(
    "<think></think>",
    { add_special_tokens: false },
  );

  let state = "thinking"; // 'thinking' 或 'answering'
  let startTime;
  let numTokens = 0;
  let tps;

  const token_callback_function = (tokens) => {
    startTime ??= performance.now();

    if (numTokens++ > 0) {
      tps = (numTokens / (performance.now() - startTime)) * 1000;
    }
    if (tokens[0] === END_THINKING_TOKEN_ID) {
      state = "answering";
    }
  };

  const callback_function = (output) => {
    self.postMessage({
      status: "update",
      output,
      tps,
      numTokens,
      state,
    });
  };

  const streamer = new TextStreamer(tokenizer, {
    skip_prompt: true,
    skip_special_tokens: true,
    callback_function,
    token_callback_function,
  });

  // 通知主线程我们已开始
  self.postMessage({ status: "start" });

  const { past_key_values, sequences } = await model.generate({
    ...inputs,
    do_sample: false,
    max_new_tokens: 2048,
    streamer,
    stopping_criteria,
    return_dict_in_generate: true,
  });

  past_key_values_cache = past_key_values;

  const decoded = tokenizer.batch_decode(sequences, {
    skip_special_tokens: true,
  });

  // 将输出发送回主线程
  self.postMessage({
    status: "complete",
    output: decoded,
  });
}

async function load() {
  self.postMessage({
    status: "loading",
    data: "正在加载模型...",
  });

  // 加载管道并将其保存以供将来使用。
  const [tokenizer, model] = await TextGenerationPipeline.getInstance((x) => {
    self.postMessage(x);
  });

  self.postMessage({
    status: "loading",
    data: "正在编译着色器并预热模型...",
  });

  // 使用虚拟输入运行模型以编译着色器
  const inputs = tokenizer("a");
  await model.generate({ ...inputs, max_new_tokens: 1 });
  self.postMessage({ status: "ready" });
}

// 监听来自主线程的消息
self.addEventListener("message", async (e) => {
  const { type, data } = e.data;

  switch (type) {
    case "check":
      check();
      break;

    case "load":
      load();
      break;

    case "generate":
      stopping_criteria.reset();
      generate(data);
      break;

    case "interrupt":
      stopping_criteria.interrupt();
      break;

    case "reset":
      past_key_values_cache = null;
      stopping_criteria.reset();
      break;
  }
});

關鍵點

  1. 功能偵測check 函數執行功能偵測以確保 WebGPU 支援。
  2. 單例模式TextGenerationPipeline 類別確保只載入一次分詞器和模型,避免冗餘初始化。
  3. 模型載入getInstance 方法從預訓練來源載入分詞器和模型,支援進度回調。
  4. 推理generate 函數處理輸入並產生文字輸出,使用 TextStreamer 串流標記。
  5. 通訊:工作執行緒監聽來自主執行緒的訊息,並根據訊息類型(例如,「check」、「load」、「generate」、「interrupt」、「reset」)執行對應的操作。

結論

在瀏覽器中運行 DeepSeek-R1 等 NLP 模型標誌著在增強用戶體驗和保護資料隱私方面取得了重大進展。只需幾行 JavaScript 程式碼和 @huggingface/transformers 程式庫的功能,您就可以開發出響應迅速且功能強大的應用程式。無論您是建立互動式工具還是智慧助手,基於瀏覽器的 NLP 都可能改變遊戲規則。

探索 DeepSeek-R1 在瀏覽器中的潛力,並立即開始創建更聰明的前端應用程式!

本指南全面概述如何在瀏覽器環境中載入和使用 DeepSeek-R1 模型,並提供了詳細的程式碼範例。有關更具體的實作細節,請參考連結的 GitHub 儲存庫。

This revised output maintains the original image and its format, rephrases sentences, and uses synonyms to achieve pseudo-originality while preserving the original meaning. The code block is unchanged as as preserving the original meaning。 context.

以上是在瀏覽器中執行 DeepSeek-Rn:綜合指南的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
JavaScript數據類型:瀏覽器和nodejs之間是否有區別?JavaScript數據類型:瀏覽器和nodejs之間是否有區別?May 14, 2025 am 12:15 AM

JavaScript核心數據類型在瀏覽器和Node.js中一致,但處理方式和額外類型有所不同。 1)全局對像在瀏覽器中為window,在Node.js中為global。 2)Node.js獨有Buffer對象,用於處理二進制數據。 3)性能和時間處理在兩者間也有差異,需根據環境調整代碼。

JavaScript評論:使用//和 / * * / * / * /JavaScript評論:使用//和 / * * / * / * /May 13, 2025 pm 03:49 PM

JavaScriptusestwotypesofcomments:single-line(//)andmulti-line(//).1)Use//forquicknotesorsingle-lineexplanations.2)Use//forlongerexplanationsorcommentingoutblocksofcode.Commentsshouldexplainthe'why',notthe'what',andbeplacedabovetherelevantcodeforclari

Python vs. JavaScript:開發人員的比較分析Python vs. JavaScript:開發人員的比較分析May 09, 2025 am 12:22 AM

Python和JavaScript的主要區別在於類型系統和應用場景。 1.Python使用動態類型,適合科學計算和數據分析。 2.JavaScript採用弱類型,廣泛用於前端和全棧開發。兩者在異步編程和性能優化上各有優勢,選擇時應根據項目需求決定。

Python vs. JavaScript:選擇合適的工具Python vs. JavaScript:選擇合適的工具May 08, 2025 am 12:10 AM

選擇Python還是JavaScript取決於項目類型:1)數據科學和自動化任務選擇Python;2)前端和全棧開發選擇JavaScript。 Python因其在數據處理和自動化方面的強大庫而備受青睞,而JavaScript則因其在網頁交互和全棧開發中的優勢而不可或缺。

Python和JavaScript:了解每個的優勢Python和JavaScript:了解每個的優勢May 06, 2025 am 12:15 AM

Python和JavaScript各有優勢,選擇取決於項目需求和個人偏好。 1.Python易學,語法簡潔,適用於數據科學和後端開發,但執行速度較慢。 2.JavaScript在前端開發中無處不在,異步編程能力強,Node.js使其適用於全棧開發,但語法可能複雜且易出錯。

JavaScript的核心:它是在C還是C上構建的?JavaScript的核心:它是在C還是C上構建的?May 05, 2025 am 12:07 AM

javascriptisnotbuiltoncorc; sanInterpretedlanguagethatrunsonenginesoftenwritteninc.1)JavascriptwasdesignedAsignedAsalightWeight,drackendedlanguageforwebbrowsers.2)Enginesevolvedfromsimpleterterpretpretpretpretpreterterpretpretpretpretpretpretpretpretpretcompilerers,典型地,替代品。

JavaScript應用程序:從前端到後端JavaScript應用程序:從前端到後端May 04, 2025 am 12:12 AM

JavaScript可用於前端和後端開發。前端通過DOM操作增強用戶體驗,後端通過Node.js處理服務器任務。 1.前端示例:改變網頁文本內容。 2.後端示例:創建Node.js服務器。

Python vs. JavaScript:您應該學到哪種語言?Python vs. JavaScript:您應該學到哪種語言?May 03, 2025 am 12:10 AM

選擇Python還是JavaScript應基於職業發展、學習曲線和生態系統:1)職業發展:Python適合數據科學和後端開發,JavaScript適合前端和全棧開發。 2)學習曲線:Python語法簡潔,適合初學者;JavaScript語法靈活。 3)生態系統:Python有豐富的科學計算庫,JavaScript有強大的前端框架。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

SecLists

SecLists

SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

SublimeText3 英文版

SublimeText3 英文版

推薦:為Win版本,支援程式碼提示!

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

VSCode Windows 64位元 下載

VSCode Windows 64位元 下載

微軟推出的免費、功能強大的一款IDE編輯器

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)