請我喝杯咖啡☕
*備忘錄:
- 我的帖子解釋了 OxfordIIITPet()。
FiveCrop() 可以將影像裁切為 5 個部分(左上、右上、左下、右下和中心),如下所示:
*備忘錄:
- 初始化的第一個參數是 size(Required-Type:int or tuple/list(int) or size()):
*備註:
- 它是[高度,寬度]。
- 必須是 1
- 元組/列表必須是具有 1 或 2 個元素的一維。
- 單一值(int 或 tuple/list(int) 表示 [size, size]。
- 第一個參數是img(必要型別:PIL影像或張量(int)):
*備註:
- 張量必須是一個或多個元素的 2D 或 3D。
- 不要使用img=。
- v2建議依照V1還是V2使用?我應該使用哪一個?
from torchvision.datasets import OxfordIIITPet from torchvision.transforms.v2 import FiveCrop fivecrop = FiveCrop(size=100) fivecrop # FiveCrop(size=(100, 100)) fivecrop.size # (100, 100) origin_data = OxfordIIITPet( root="data", transform=None ) p500p394origin_data = OxfordIIITPet( root="data", transform=FiveCrop(size=[500, 394]) # transform=FiveCrop(size=[600]) # transform=FiveCrop(size=[600, 600]) ) p300_data = OxfordIIITPet( root="data", transform=FiveCrop(size=300) ) p200_data = OxfordIIITPet( root="data", transform=FiveCrop(size=200) ) p100_data = OxfordIIITPet( root="data", transform=FiveCrop(size=100) ) p50_data = OxfordIIITPet( root="data", transform=FiveCrop(size=50) ) p10_data = OxfordIIITPet( root="data", transform=FiveCrop(size=10) ) p200p300_data = OxfordIIITPet( root="data", transform=FiveCrop(size=[200, 300]) ) p300p200_data = OxfordIIITPet( root="data", transform=FiveCrop(size=[300, 200]) ) import matplotlib.pyplot as plt def show_images1(fcims, main_title=None): plt.figure(figsize=(10, 5)) plt.suptitle(t=main_title, y=0.8, fontsize=14) titles = ['Top-left', 'Top-right', 'bottom-left', 'bottom-right', 'center'] for i, fcim in zip(range(1, 6), fcims): plt.subplot(1, 5, i) plt.title(label=titles[i-1], fontsize=14) plt.imshow(X=fcim) plt.tight_layout() plt.show() plt.figure(figsize=(7, 9)) plt.title(label="Origin_data", fontsize=14) plt.imshow(X=origin_data[0][0]) show_images1(fcims=p500p394origin_data[0][0], main_title="p500p394origin_data") show_images1(fcims=p300_data[0][0], main_title="p300_data") show_images1(fcims=p200_data[0][0], main_title="p200_data") show_images1(fcims=p100_data[0][0], main_title="p100_data") show_images1(fcims=p50_data[0][0], main_title="p50_data") show_images1(fcims=p10_data[0][0], main_title="p10_data") show_images1(fcims=p200p300_data[0][0], main_title="p200p300_data") show_images1(fcims=p300p200_data[0][0], main_title="p300p200_data") # ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓ def show_images2(im, main_title=None, s=None): plt.figure(figsize=(10, 5)) plt.suptitle(t=main_title, y=0.8, fontsize=14) titles = ['Top-left', 'Top-right', 'bottom-left', 'bottom-right', 'center'] if not s: s = [im.size[1], im.size[0]] fc = FiveCrop(size=s) # Here for i, fcim in zip(range(1, 6), fc(im)): plt.subplot(1, 5, i) plt.title(label=titles[i-1], fontsize=14) plt.imshow(X=fcim) # Here plt.tight_layout() plt.show() plt.figure(figsize=(7, 9)) plt.title(label="Origin_data", fontsize=14) plt.imshow(X=origin_data[0][0]) show_images2(im=origin_data[0][0], main_title="p500p394origin_data") # show_images2(im=origin_data[0][0], main_title="p500p394origin_data", # s=[500, 394]) show_images2(im=origin_data[0][0], main_title="p300_data", s=300) show_images2(im=origin_data[0][0], main_title="p200_data", s=200) show_images2(im=origin_data[0][0], main_title="p100_data", s=100) show_images2(im=origin_data[0][0], main_title="p50_data", s=50) show_images2(im=origin_data[0][0], main_title="p10_data", s=10) show_images2(im=origin_data[0][0], main_title="p200p300_data", s=[200, 300]) show_images2(im=origin_data[0][0], main_title="p300p200_data", s=[300, 200])
以上是PyTorch 中的 FiveCrop的詳細內容。更多資訊請關注PHP中文網其他相關文章!

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。

Python在Web開發中的關鍵應用包括使用Django和Flask框架、API開發、數據分析與可視化、機器學習與AI、以及性能優化。 1.Django和Flask框架:Django適合快速開發複雜應用,Flask適用於小型或高度自定義項目。 2.API開發:使用Flask或DjangoRESTFramework構建RESTfulAPI。 3.數據分析與可視化:利用Python處理數據並通過Web界面展示。 4.機器學習與AI:Python用於構建智能Web應用。 5.性能優化:通過異步編程、緩存和代碼優

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。

Python在現實世界中的應用包括數據分析、Web開發、人工智能和自動化。 1)在數據分析中,Python使用Pandas和Matplotlib處理和可視化數據。 2)Web開發中,Django和Flask框架簡化了Web應用的創建。 3)人工智能領域,TensorFlow和PyTorch用於構建和訓練模型。 4)自動化方面,Python腳本可用於復製文件等任務。

Python在數據科學、Web開發和自動化腳本領域廣泛應用。 1)在數據科學中,Python通過NumPy、Pandas等庫簡化數據處理和分析。 2)在Web開發中,Django和Flask框架使開發者能快速構建應用。 3)在自動化腳本中,Python的簡潔性和標準庫使其成為理想選擇。

Python的靈活性體現在多範式支持和動態類型系統,易用性則源於語法簡潔和豐富的標準庫。 1.靈活性:支持面向對象、函數式和過程式編程,動態類型系統提高開發效率。 2.易用性:語法接近自然語言,標準庫涵蓋廣泛功能,簡化開發過程。

Python因其簡潔與強大而備受青睞,適用於從初學者到高級開發者的各種需求。其多功能性體現在:1)易學易用,語法簡單;2)豐富的庫和框架,如NumPy、Pandas等;3)跨平台支持,可在多種操作系統上運行;4)適合腳本和自動化任務,提升工作效率。

可以,在每天花費兩個小時的時間內學會Python。 1.制定合理的學習計劃,2.選擇合適的學習資源,3.通過實踐鞏固所學知識,這些步驟能幫助你在短時間內掌握Python。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

VSCode Windows 64位元 下載
微軟推出的免費、功能強大的一款IDE編輯器

MantisBT
Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境

Dreamweaver Mac版
視覺化網頁開發工具

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。