請我喝杯咖啡☕
*備忘錄:
- 我的帖子解釋了 OxfordIIITPet()。
FiveCrop() 可以將影像裁切為 5 個部分(左上、右上、左下、右下和中心),如下所示:
*備忘錄:
- 初始化的第一個參數是 size(Required-Type:int or tuple/list(int) or size()):
*備註:
- 它是[高度,寬度]。
- 必須是 1
- 元組/列表必須是具有 1 或 2 個元素的一維。
- 單一值(int 或 tuple/list(int) 表示 [size, size]。
- 第一個參數是img(必要型別:PIL影像或張量(int)):
*備註:
- 張量必須是一個或多個元素的 2D 或 3D。
- 不要使用img=。
- v2建議依照V1還是V2使用?我應該使用哪一個?
from torchvision.datasets import OxfordIIITPet from torchvision.transforms.v2 import FiveCrop fivecrop = FiveCrop(size=100) fivecrop # FiveCrop(size=(100, 100)) fivecrop.size # (100, 100) origin_data = OxfordIIITPet( root="data", transform=None ) p500p394origin_data = OxfordIIITPet( root="data", transform=FiveCrop(size=[500, 394]) # transform=FiveCrop(size=[600]) # transform=FiveCrop(size=[600, 600]) ) p300_data = OxfordIIITPet( root="data", transform=FiveCrop(size=300) ) p200_data = OxfordIIITPet( root="data", transform=FiveCrop(size=200) ) p100_data = OxfordIIITPet( root="data", transform=FiveCrop(size=100) ) p50_data = OxfordIIITPet( root="data", transform=FiveCrop(size=50) ) p10_data = OxfordIIITPet( root="data", transform=FiveCrop(size=10) ) p200p300_data = OxfordIIITPet( root="data", transform=FiveCrop(size=[200, 300]) ) p300p200_data = OxfordIIITPet( root="data", transform=FiveCrop(size=[300, 200]) ) import matplotlib.pyplot as plt def show_images1(fcims, main_title=None): plt.figure(figsize=(10, 5)) plt.suptitle(t=main_title, y=0.8, fontsize=14) titles = ['Top-left', 'Top-right', 'bottom-left', 'bottom-right', 'center'] for i, fcim in zip(range(1, 6), fcims): plt.subplot(1, 5, i) plt.title(label=titles[i-1], fontsize=14) plt.imshow(X=fcim) plt.tight_layout() plt.show() plt.figure(figsize=(7, 9)) plt.title(label="Origin_data", fontsize=14) plt.imshow(X=origin_data[0][0]) show_images1(fcims=p500p394origin_data[0][0], main_title="p500p394origin_data") show_images1(fcims=p300_data[0][0], main_title="p300_data") show_images1(fcims=p200_data[0][0], main_title="p200_data") show_images1(fcims=p100_data[0][0], main_title="p100_data") show_images1(fcims=p50_data[0][0], main_title="p50_data") show_images1(fcims=p10_data[0][0], main_title="p10_data") show_images1(fcims=p200p300_data[0][0], main_title="p200p300_data") show_images1(fcims=p300p200_data[0][0], main_title="p300p200_data") # ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓ def show_images2(im, main_title=None, s=None): plt.figure(figsize=(10, 5)) plt.suptitle(t=main_title, y=0.8, fontsize=14) titles = ['Top-left', 'Top-right', 'bottom-left', 'bottom-right', 'center'] if not s: s = [im.size[1], im.size[0]] fc = FiveCrop(size=s) # Here for i, fcim in zip(range(1, 6), fc(im)): plt.subplot(1, 5, i) plt.title(label=titles[i-1], fontsize=14) plt.imshow(X=fcim) # Here plt.tight_layout() plt.show() plt.figure(figsize=(7, 9)) plt.title(label="Origin_data", fontsize=14) plt.imshow(X=origin_data[0][0]) show_images2(im=origin_data[0][0], main_title="p500p394origin_data") # show_images2(im=origin_data[0][0], main_title="p500p394origin_data", # s=[500, 394]) show_images2(im=origin_data[0][0], main_title="p300_data", s=300) show_images2(im=origin_data[0][0], main_title="p200_data", s=200) show_images2(im=origin_data[0][0], main_title="p100_data", s=100) show_images2(im=origin_data[0][0], main_title="p50_data", s=50) show_images2(im=origin_data[0][0], main_title="p10_data", s=10) show_images2(im=origin_data[0][0], main_title="p200p300_data", s=[200, 300]) show_images2(im=origin_data[0][0], main_title="p300p200_data", s=[300, 200])
以上是PyTorch 中的 FiveCrop的詳細內容。更多資訊請關注PHP中文網其他相關文章!

可以使用多種方法在Python中連接兩個列表:1.使用 操作符,簡單但在大列表中效率低;2.使用extend方法,效率高但會修改原列表;3.使用 =操作符,兼具效率和可讀性;4.使用itertools.chain函數,內存效率高但需額外導入;5.使用列表解析,優雅但可能過於復雜。選擇方法應根據代碼上下文和需求。

有多種方法可以合併Python列表:1.使用 操作符,簡單但對大列表不內存高效;2.使用extend方法,內存高效但會修改原列表;3.使用itertools.chain,適用於大數據集;4.使用*操作符,一行代碼合併小到中型列表;5.使用numpy.concatenate,適用於大數據集和性能要求高的場景;6.使用append方法,適用於小列表但效率低。選擇方法時需考慮列表大小和應用場景。

CompiledLanguagesOffersPeedAndSecurity,而interneterpretledlanguages provideeaseafuseanDoctability.1)commiledlanguageslikec arefasterandSecureButhOnderDevevelmendeclementCyclesclesclesclesclesclesclesclesclesclesclesclesclesclesclesclesclesclesandentency.2)cransportedeplatectentysenty

Python中,for循環用於遍歷可迭代對象,while循環用於條件滿足時重複執行操作。 1)for循環示例:遍歷列表並打印元素。 2)while循環示例:猜數字遊戲,直到猜對為止。掌握循環原理和優化技巧可提高代碼效率和可靠性。

要將列表連接成字符串,Python中使用join()方法是最佳選擇。 1)使用join()方法將列表元素連接成字符串,如''.join(my_list)。 2)對於包含數字的列表,先用map(str,numbers)轉換為字符串再連接。 3)可以使用生成器表達式進行複雜格式化,如','.join(f'({fruit})'forfruitinfruits)。 4)處理混合數據類型時,使用map(str,mixed_list)確保所有元素可轉換為字符串。 5)對於大型列表,使用''.join(large_li

pythonuseshybridapprace,ComminingCompilationTobyTecoDeAndInterpretation.1)codeiscompiledtoplatform-Indepententbybytecode.2)bytecodeisisterpretedbybythepbybythepythonvirtualmachine,增強效率和通用性。

theKeyDifferencesBetnewpython's“ for”和“ for”和“ loopsare:1)” for“ loopsareIdealForiteringSequenceSquencesSorkNowniterations,而2)”,而“ loopsareBetterforConterContinuingUntilacTientInditionIntionismetismetistismetistwithOutpredefinedInedIterations.un

在Python中,可以通過多種方法連接列表並管理重複元素:1)使用 運算符或extend()方法可以保留所有重複元素;2)轉換為集合再轉回列表可以去除所有重複元素,但會丟失原有順序;3)使用循環或列表推導式結合集合可以去除重複元素並保持原有順序。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

Safe Exam Browser
Safe Exam Browser是一個安全的瀏覽器環境,安全地進行線上考試。該軟體將任何電腦變成一個安全的工作站。它控制對任何實用工具的訪問,並防止學生使用未經授權的資源。

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

mPDF
mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

記事本++7.3.1
好用且免費的程式碼編輯器

WebStorm Mac版
好用的JavaScript開發工具