搜尋
首頁後端開發Python教學在 Python 應用程式中提升資料庫效能的強大技術

owerful Techniques to Boost Database Performance in Python Applications

作為一位多產的作家,我鼓勵您在亞馬遜上探索我的書。 請記得在 Medium 上關注我以獲得持續支持。謝謝你!您的支持非常寶貴!

高效的資料庫互動對於高效能 Python 應用程式至關重要。本文詳細介紹了在 Python 專案中大幅提高資料庫查詢速度和 ORM 優化的七種策略。

  1. 掌握 SQLAlchemy 的查詢最佳化:

SQLAlchemy 是領先的 Python ORM,提供強大的查詢最佳化工具。 例如,預先載入可以在單一查詢中檢索相關對象,從而最大限度地減少資料庫呼叫。

考慮一個有連結 UserPosts 模型:

from sqlalchemy import create_engine, Column, Integer, String, ForeignKey
from sqlalchemy.orm import relationship, sessionmaker
from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

class User(Base):
    __tablename__ = 'users'
    id = Column(Integer, primary_key=True)
    name = Column(String)
    posts = relationship("Post", back_populates="user")

class Post(Base):
    __tablename__ = 'posts'
    id = Column(Integer, primary_key=True)
    title = Column(String)
    user_id = Column(Integer, ForeignKey('users.id'))
    user = relationship("User", back_populates="posts")

engine = create_engine('postgresql://user:password@localhost/dbname')
Session = sessionmaker(bind=engine)

使用 joinedload 高效獲取用戶及其貼文:

session = Session()
users = session.query(User).options(joinedload(User.posts)).all()

這避免了 N 1 查詢問題,透過單一資料庫互動來取得所有資料。

  1. 實現強大的查詢快取:

快取經常存取的資料可以顯著減少資料庫負載。 像 Redis 或 Memcached 這樣的函式庫是很好的選擇。 這是一個 Redis 範例:

import redis
import pickle
from sqlalchemy import create_engine, text

redis_client = redis.Redis(host='localhost', port=6379, db=0)
engine = create_engine('postgresql://user:password@localhost/dbname')

def get_user_data(user_id):
    cache_key = f"user:{user_id}"
    cached_data = redis_client.get(cache_key)

    if cached_data:
        return pickle.loads(cached_data)

    with engine.connect() as conn:
        result = conn.execute(text("SELECT * FROM users WHERE id = :id"), {"id": user_id})
        user_data = result.fetchone()

        if user_data:
            redis_client.setex(cache_key, 3600, pickle.dumps(user_data))  # Cache for 1 hour

        return user_data

這會優先考慮 Redis 緩存,僅在必要時查詢資料庫。

  1. 利用大量操作的力量:

對於大型資料集,批次操作具有變革性。 SQLAlchemy 提供高效率的批次插入和更新方法:

from sqlalchemy.orm import Session
# ... (rest of the code remains the same)

# Bulk insert
users = [User(name=f"User {i}") for i in range(1000)]
session.bulk_save_objects(users)
session.commit()

# Bulk update
# ...

這顯著減少了資料庫查詢的數量。

  1. 利用資料庫特定的功能:

資料庫提供獨特的效能增強功能。例如,PostgreSQL 的 JSONB 類型提供了高效的 JSON 資料儲存和查詢:

from sqlalchemy import create_engine, Column, Integer, JSON
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.dialects.postgresql import JSONB

# ... (rest of the code remains the same)

# Querying JSONB data
# ...

這將靈活的架構設計與最佳化的查詢結合。

  1. 實現高效率的連線池:

連接池至關重要,尤其是在高並發環境中。 SQLAlchemy 的內建池可以自訂:

from sqlalchemy import create_engine
from sqlalchemy.pool import QueuePool

engine = create_engine('postgresql://user:password@localhost/dbname',
                       poolclass=QueuePool,
                       pool_size=10,
                       max_overflow=20,
                       pool_timeout=30,
                       pool_recycle=1800)

這會配置連線池,有效管理連線。

  1. 利用查詢分析與最佳化工具:

辨識慢速查詢至關重要。 SQLAlchemy 的事件系統允許查詢分析:

import time
from sqlalchemy import event
from sqlalchemy.engine import Engine

# ... (event listener code remains the same)

這會記錄查詢執行時間和 SQL 語句,找出需要改進的地方。

  1. 實作資料庫分片與唯讀副本:

對於大規模應用程序,分片和唯讀副本會分配負載。 這是一個簡化的唯讀副本範例:

from sqlalchemy import create_engine, Column, Integer, String, ForeignKey
from sqlalchemy.orm import relationship, sessionmaker
from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

class User(Base):
    __tablename__ = 'users'
    id = Column(Integer, primary_key=True)
    name = Column(String)
    posts = relationship("Post", back_populates="user")

class Post(Base):
    __tablename__ = 'posts'
    id = Column(Integer, primary_key=True)
    title = Column(String)
    user_id = Column(Integer, ForeignKey('users.id'))
    user = relationship("User", back_populates="posts")

engine = create_engine('postgresql://user:password@localhost/dbname')
Session = sessionmaker(bind=engine)

這將讀取和寫入操作分開以提高可擴展性。

這七種策略可以顯著提高資料庫效能。請記住,優化應該是數據驅動的,並根據應用程式的特定需求進行客製化。 優先考慮清晰的資料庫模式和結構良好的查詢。 持續監控績效並策略性地應用這些技術以獲得最佳結果。 在效能提升與程式碼可讀性和可維護性之間取得平衡。


101本書

101 Books是一家人工智慧出版社,由作家Aarav Joshi共同創立。 我們的人工智慧驅動方法使出版成本顯著降低——一些書籍的價格低至 4 美元——讓所有人都能獲得高品質的知識。

探索我們在亞馬遜上的書Golang Clean Code

隨時了解我們的最新消息和優惠。在亞馬遜上搜尋Aarav Joshi即可發現更多書籍並享受特別折扣

我們的專案

了解我們的專案:

投資者中心 | 投資者中心(西班牙語) | 投資者中心(德語) | 智能生活 | 時代與迴響 | 令人費解的謎團 | 印度教 | 菁英發展 | JS學校


在 Medium 上找到我們

科技無尾熊洞察 | 時代與迴響世界 | 投資者中心(中) | 令人費解的謎團(中) | 科學與時代(中) | 現代印度教

以上是在 Python 應用程式中提升資料庫效能的強大技術的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
python中兩個列表的串聯替代方案是什麼?python中兩個列表的串聯替代方案是什麼?May 09, 2025 am 12:16 AM

可以使用多種方法在Python中連接兩個列表:1.使用 操作符,簡單但在大列表中效率低;2.使用extend方法,效率高但會修改原列表;3.使用 =操作符,兼具效率和可讀性;4.使用itertools.chain函數,內存效率高但需額外導入;5.使用列表解析,優雅但可能過於復雜。選擇方法應根據代碼上下文和需求。

Python:合併兩個列表的有效方法Python:合併兩個列表的有效方法May 09, 2025 am 12:15 AM

有多種方法可以合併Python列表:1.使用 操作符,簡單但對大列表不內存高效;2.使用extend方法,內存高效但會修改原列表;3.使用itertools.chain,適用於大數據集;4.使用*操作符,一行代碼合併小到中型列表;5.使用numpy.concatenate,適用於大數據集和性能要求高的場景;6.使用append方法,適用於小列表但效率低。選擇方法時需考慮列表大小和應用場景。

編譯的與解釋的語言:優點和缺點編譯的與解釋的語言:優點和缺點May 09, 2025 am 12:06 AM

CompiledLanguagesOffersPeedAndSecurity,而interneterpretledlanguages provideeaseafuseanDoctability.1)commiledlanguageslikec arefasterandSecureButhOnderDevevelmendeclementCyclesclesclesclesclesclesclesclesclesclesclesclesclesclesclesclesclesclesandentency.2)cransportedeplatectentysenty

Python:對於循環,最完整的指南Python:對於循環,最完整的指南May 09, 2025 am 12:05 AM

Python中,for循環用於遍歷可迭代對象,while循環用於條件滿足時重複執行操作。 1)for循環示例:遍歷列表並打印元素。 2)while循環示例:猜數字遊戲,直到猜對為止。掌握循環原理和優化技巧可提高代碼效率和可靠性。

python concatenate列表到一個字符串中python concatenate列表到一個字符串中May 09, 2025 am 12:02 AM

要將列表連接成字符串,Python中使用join()方法是最佳選擇。 1)使用join()方法將列表元素連接成字符串,如''.join(my_list)。 2)對於包含數字的列表,先用map(str,numbers)轉換為字符串再連接。 3)可以使用生成器表達式進行複雜格式化,如','.join(f'({fruit})'forfruitinfruits)。 4)處理混合數據類型時,使用map(str,mixed_list)確保所有元素可轉換為字符串。 5)對於大型列表,使用''.join(large_li

Python的混合方法:編譯和解釋合併Python的混合方法:編譯和解釋合併May 08, 2025 am 12:16 AM

pythonuseshybridapprace,ComminingCompilationTobyTecoDeAndInterpretation.1)codeiscompiledtoplatform-Indepententbybytecode.2)bytecodeisisterpretedbybythepbybythepythonvirtualmachine,增強效率和通用性。

了解python的' for”和' then”循環之間的差異了解python的' for”和' then”循環之間的差異May 08, 2025 am 12:11 AM

theKeyDifferencesBetnewpython's“ for”和“ for”和“ loopsare:1)” for“ loopsareIdealForiteringSequenceSquencesSorkNowniterations,而2)”,而“ loopsareBetterforConterContinuingUntilacTientInditionIntionismetismetistismetistwithOutpredefinedInedIterations.un

Python串聯列表與重複Python串聯列表與重複May 08, 2025 am 12:09 AM

在Python中,可以通過多種方法連接列表並管理重複元素:1)使用 運算符或extend()方法可以保留所有重複元素;2)轉換為集合再轉回列表可以去除所有重複元素,但會丟失原有順序;3)使用循環或列表推導式結合集合可以去除重複元素並保持原有順序。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

mPDF

mPDF

mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

VSCode Windows 64位元 下載

VSCode Windows 64位元 下載

微軟推出的免費、功能強大的一款IDE編輯器

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

MantisBT

MantisBT

Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境