搜尋
首頁後端開發Python教學攀登深度優先搜尋之山,《代碼來臨》第 10 天

今天的挑戰解決了第 10 天的難題,一個類似於第 6 天的二維網格,但需要探索多條路徑。 這個謎題優雅地展示了深度優先搜尋 (DFS) 的強大功能。

Climbing a depth-first search hill, Advent of Code day 10
AI 產生的拼圖插圖

地圖被表示為字典;鍵是 (x, y) 座標,值是表示高度的單位數整數 (0-9),其中 9 表示峰值。 解析函數有效地處理了這個資料結構:

def parse(input: str) -> dict[tuple[int, int], int | None]:
    return {
        (x, y): int(item) if item.isdigit() else None
        for y, row in enumerate(input.strip().splitlines())
        for x, item in enumerate(row)
    }

步道從步道起點(高度 0)上升到山頂(高度 9),每步高度增加 1。 next_step 函數標識有效的後續步驟:

TRAIL_MAX = 9

def next_step(
    topo_map: dict[tuple[int, int], int | None], x: int, y: int
) -> tuple[tuple[int, int], ...]:
    assert topo_map[(x, y)] != TRAIL_MAX

    return tuple(
        incoming
        for incoming in (
            (x + 1, y),
            (x, y + 1),
            (x - 1, y),
            (x, y - 1),
        )
        if (
            isinstance(topo_map.get(incoming), int)
            and isinstance(topo_map.get((x, y)), int)
            and (topo_map[incoming] - topo_map[(x, y)] == 1)
        )
    )

路線起點(高度 0)使用 find_trailheads:

定位
TRAILHEAD = 0

def find_trailheads(
    topo_map: dict[tuple[int, int], int | None],
) -> tuple[tuple[int, int], ...]:
    return tuple(key for key, value in topo_map.items() if value == TRAILHEAD)

解決方案的核心是climb函數,它實現了深度優先搜尋。 遵循維基百科對 DFS 的定義,我們在回溯之前充分探索每個分支。

Climbing a depth-first search hill, Advent of Code day 10
深度優先搜尋的視覺表示

地圖點是我們的“節點”,我們一次上升一層高度。 climb 函數管理 DFS 流程:

def climb(
    topo_map: dict[tuple[int, int], int | None], trailheads: tuple[tuple[int, int], ...]
) -> dict[
    tuple[tuple[int, int], tuple[int, int]], tuple[tuple[tuple[int, int], ...], ...]
]:
    candidates: list[tuple[tuple[int, int], ...]] = [(head,) for head in trailheads]

    result = {}

    while candidates:
        current = candidates.pop()
        while True:
            if topo_map[current[-1]] == TRAIL_MAX:
                result[(current[0], current[-1])] = result.get(
                    (current[0], current[-1]), ()
                ) + (current,)
                break

            elif steps := next_step(topo_map, *current[-1]):
                incoming, *rest = steps

                candidates.extend([current + (step,) for step in rest])

                current = current + (incoming,)
            else:
                break

    return result

else 子句的 break 處理死胡同,防止無限循環。 此函數傳回從每個步道起點到山頂的所有路徑。

第 1 部分統計了獨特的高峰目的地:

def part1(input: str) -> int:
    topo_map = parse(input)

    return len(climb(topo_map, find_trailheads(topo_map)))

第 2 部分計算所有唯一路徑:

def part2(input: str) -> int:
    topo_map = parse(input)

    return sum(
        len(routes) for routes in climb(topo_map, find_trailheads(topo_map)).values()
    )

雖然有替代方法(例如,將 Trailhead 偵測整合到解析中),但該解決方案的效能是可以接受的。 最近找工作的挫折並沒有澆熄我的精神;我仍然充滿希望。 如果您正在尋找中高階 Python 開發人員,請與我們聯絡。 直到下週!

以上是攀登深度優先搜尋之山,《代碼來臨》第 10 天的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
如何解決Linux終端中查看Python版本時遇到的權限問題?如何解決Linux終端中查看Python版本時遇到的權限問題?Apr 01, 2025 pm 05:09 PM

Linux終端中查看Python版本時遇到權限問題的解決方法當你在Linux終端中嘗試查看Python的版本時,輸入python...

我如何使用美麗的湯來解析HTML?我如何使用美麗的湯來解析HTML?Mar 10, 2025 pm 06:54 PM

本文解釋瞭如何使用美麗的湯庫來解析html。 它詳細介紹了常見方法,例如find(),find_all(),select()和get_text(),以用於數據提取,處理不同的HTML結構和錯誤以及替代方案(SEL)

Python中的數學模塊:統計Python中的數學模塊:統計Mar 09, 2025 am 11:40 AM

Python的statistics模塊提供強大的數據統計分析功能,幫助我們快速理解數據整體特徵,例如生物統計學和商業分析等領域。無需逐個查看數據點,只需查看均值或方差等統計量,即可發現原始數據中可能被忽略的趨勢和特徵,並更輕鬆、有效地比較大型數據集。 本教程將介紹如何計算平均值和衡量數據集的離散程度。除非另有說明,本模塊中的所有函數都支持使用mean()函數計算平均值,而非簡單的求和平均。 也可使用浮點數。 import random import statistics from fracti

如何使用TensorFlow或Pytorch進行深度學習?如何使用TensorFlow或Pytorch進行深度學習?Mar 10, 2025 pm 06:52 PM

本文比較了Tensorflow和Pytorch的深度學習。 它詳細介紹了所涉及的步驟:數據準備,模型構建,培訓,評估和部署。 框架之間的關鍵差異,特別是關於計算刻度的

哪些流行的Python庫及其用途?哪些流行的Python庫及其用途?Mar 21, 2025 pm 06:46 PM

本文討論了諸如Numpy,Pandas,Matplotlib,Scikit-Learn,Tensorflow,Tensorflow,Django,Blask和請求等流行的Python庫,並詳細介紹了它們在科學計算,數據分析,可視化,機器學習,網絡開發和H中的用途

如何使用Python創建命令行接口(CLI)?如何使用Python創建命令行接口(CLI)?Mar 10, 2025 pm 06:48 PM

本文指導Python開發人員構建命令行界面(CLIS)。 它使用Typer,Click和ArgParse等庫詳細介紹,強調輸入/輸出處理,並促進用戶友好的設計模式,以提高CLI可用性。

在Python中如何高效地將一個DataFrame的整列複製到另一個結構不同的DataFrame中?在Python中如何高效地將一個DataFrame的整列複製到另一個結構不同的DataFrame中?Apr 01, 2025 pm 11:15 PM

在使用Python的pandas庫時,如何在兩個結構不同的DataFrame之間進行整列複製是一個常見的問題。假設我們有兩個Dat...

解釋Python中虛擬環境的目的。解釋Python中虛擬環境的目的。Mar 19, 2025 pm 02:27 PM

文章討論了虛擬環境在Python中的作用,重點是管理項目依賴性並避免衝突。它詳細介紹了他們在改善項目管理和減少依賴問題方面的創建,激活和利益。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
3 週前By尊渡假赌尊渡假赌尊渡假赌

熱工具

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser是一個安全的瀏覽器環境,安全地進行線上考試。該軟體將任何電腦變成一個安全的工作站。它控制對任何實用工具的訪問,並防止學生使用未經授權的資源。

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

將Eclipse與SAP NetWeaver應用伺服器整合。

SublimeText3 英文版

SublimeText3 英文版

推薦:為Win版本,支援程式碼提示!

mPDF

mPDF

mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),