搜尋
首頁後端開發Python教學Python 中使用 HTTPX 和 asyncio 的非同步 HTTP 請求

非同步程式設計在 Python 開發中變得越來越重要。 隨著 asyncio 現在成為標準庫元件和許多相容的第三方包,這種範例將繼續存在。本教學課程示範如何使用 HTTPX 程式庫進行非同步 HTTP 請求 - 非阻塞程式碼的主要用例。

什麼是非阻塞程式碼?

「非同步」、「非阻塞」和「並發」等術語可能會令人困惑。 本質上:

  • 非同步例程可以在等待結果時“暫停”,從而允許其他例程同時執行。
  • 這會創建並發執行的外觀,即使可能不涉及真正的並行性。

非同步程式碼避免阻塞,使其他程式碼能夠在等待結果時運作。 asyncio 函式庫為此提供了工具,並且 aiohttp 提供了專門的 HTTP 請求功能。 HTTP 請求非常適合非同步性,因為它們涉及等待伺服器回應,在此期間其他任務可以有效執行。

設定

確保您的 Python 環境已配置。 如果需要,請參閱虛擬環境指南(需要 Python 3.7)。 安裝HTTPX

pip install httpx==0.18.2

使用 HTTPX 發出 HTTP 請求

此範例使用對 Pokémon API 的單一 GET 請求來取得 Mew(Pokémon #151)的資料:

import asyncio
import httpx

async def main():
    url = 'https://pokeapi.co/api/v2/pokemon/151'
    async with httpx.AsyncClient() as client:
        response = await client.get(url)
        pokemon = response.json()
        print(pokemon['name'])

asyncio.run(main())

async 指定一個協程; await 產生對事件循環的控制,在結果可用時恢復執行。

提出多個請求

當發出大量請求時,非同步性的真正力量是顯而易見的。此範例取得前 150 個 Pokémon 的資料:

import asyncio
import httpx
import time

start_time = time.time()

async def main():
    async with httpx.AsyncClient() as client:
        for number in range(1, 151):
            url = f'https://pokeapi.co/api/v2/pokemon/{number}'
            response = await client.get(url)
            pokemon = response.json()
            print(pokemon['name'])

asyncio.run(main())
print(f"--- {time.time() - start_time:.2f} seconds ---")

執行的時間。 將此與同步方法進行比較。

同步請求比較

同步等效項:

import httpx
import time

start_time = time.time()
client = httpx.Client()
for number in range(1, 151):
    url = f'https://pokeapi.co/api/v2/pokemon/{number}'
    response = client.get(url)
    pokemon = response.json()
    print(pokemon['name'])

print(f"--- {time.time() - start_time:.2f} seconds ---")

注意運行時差異。 HTTPX 的連接池最大限度地減少了差異,但 asyncio 提供了進一步的最佳化。

高階非同步技術

為了獲得卓越的效能,請使用 asyncio.ensure_futureasyncio.gather 同時執行請求:

import asyncio
import httpx
import time

start_time = time.time()

async def fetch_pokemon(client, url):
    response = await client.get(url)
    return response.json()['name']

async def main():
    async with httpx.AsyncClient() as client:
        tasks = [asyncio.ensure_future(fetch_pokemon(client, f'https://pokeapi.co/api/v2/pokemon/{number}')) for number in range(1, 151)]
        pokemon_names = await asyncio.gather(*tasks)
        for name in pokemon_names:
            print(name)

asyncio.run(main())
print(f"--- {time.time() - start_time:.2f} seconds ---")

這透過並發運行請求顯著減少了執行時間。 總時間接近最長單次請求的持續時間。

結論

使用 HTTPX 和非同步程式設計可以顯著提高多個 HTTP 請求的效能。本教學提供了 asyncio 的基本介紹;進一步探索其功能以增強您的 Python 專案。 考慮探索 aiohttp 來取代非同步 HTTP 請求處理。 Asynchronous HTTP Requests in Python with HTTPX and asyncio Asynchronous HTTP Requests in Python with HTTPX and asyncio Asynchronous HTTP Requests in Python with HTTPX and asyncio

以上是Python 中使用 HTTPX 和 asyncio 的非同步 HTTP 請求的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
如何使用Python查找文本文件的ZIPF分佈如何使用Python查找文本文件的ZIPF分佈Mar 05, 2025 am 09:58 AM

本教程演示如何使用Python處理Zipf定律這一統計概念,並展示Python在處理該定律時讀取和排序大型文本文件的效率。 您可能想知道Zipf分佈這個術語是什麼意思。要理解這個術語,我們首先需要定義Zipf定律。別擔心,我會盡量簡化說明。 Zipf定律 Zipf定律簡單來說就是:在一個大型自然語言語料庫中,最頻繁出現的詞的出現頻率大約是第二頻繁詞的兩倍,是第三頻繁詞的三倍,是第四頻繁詞的四倍,以此類推。 讓我們來看一個例子。如果您查看美國英語的Brown語料庫,您會注意到最頻繁出現的詞是“th

我如何使用美麗的湯來解析HTML?我如何使用美麗的湯來解析HTML?Mar 10, 2025 pm 06:54 PM

本文解釋瞭如何使用美麗的湯庫來解析html。 它詳細介紹了常見方法,例如find(),find_all(),select()和get_text(),以用於數據提取,處理不同的HTML結構和錯誤以及替代方案(SEL)

python中的圖像過濾python中的圖像過濾Mar 03, 2025 am 09:44 AM

處理嘈雜的圖像是一個常見的問題,尤其是手機或低分辨率攝像頭照片。 本教程使用OpenCV探索Python中的圖像過濾技術來解決此問題。 圖像過濾:功能強大的工具圖像過濾器

如何使用Python使用PDF文檔如何使用Python使用PDF文檔Mar 02, 2025 am 09:54 AM

PDF 文件因其跨平台兼容性而廣受歡迎,內容和佈局在不同操作系統、閱讀設備和軟件上保持一致。然而,與 Python 處理純文本文件不同,PDF 文件是二進製文件,結構更複雜,包含字體、顏色和圖像等元素。 幸運的是,借助 Python 的外部模塊,處理 PDF 文件並非難事。本文將使用 PyPDF2 模塊演示如何打開 PDF 文件、打印頁面和提取文本。關於 PDF 文件的創建和編輯,請參考我的另一篇教程。 準備工作 核心在於使用外部模塊 PyPDF2。首先,使用 pip 安裝它: pip 是 P

如何在django應用程序中使用redis緩存如何在django應用程序中使用redis緩存Mar 02, 2025 am 10:10 AM

本教程演示瞭如何利用Redis緩存以提高Python應用程序的性能,特別是在Django框架內。 我們將介紹REDIS安裝,Django配置和性能比較,以突出顯示BENE

如何使用TensorFlow或Pytorch進行深度學習?如何使用TensorFlow或Pytorch進行深度學習?Mar 10, 2025 pm 06:52 PM

本文比較了Tensorflow和Pytorch的深度學習。 它詳細介紹了所涉及的步驟:數據準備,模型構建,培訓,評估和部署。 框架之間的關鍵差異,特別是關於計算刻度的

Python中的平行和並發編程簡介Python中的平行和並發編程簡介Mar 03, 2025 am 10:32 AM

Python是數據科學和處理的最愛,為高性能計算提供了豐富的生態系統。但是,Python中的並行編程提出了獨特的挑戰。本教程探討了這些挑戰,重點是全球解釋

如何在Python中實現自己的數據結構如何在Python中實現自己的數據結構Mar 03, 2025 am 09:28 AM

本教程演示了在Python 3中創建自定義管道數據結構,利用類和操作員超載以增強功能。 管道的靈活性在於它能夠將一系列函數應用於數據集的能力,GE

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
2 週前By尊渡假赌尊渡假赌尊渡假赌
倉庫:如何復興隊友
4 週前By尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island冒險:如何獲得巨型種子
4 週前By尊渡假赌尊渡假赌尊渡假赌

熱工具

MantisBT

MantisBT

Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )專業的PHP整合開發工具

VSCode Windows 64位元 下載

VSCode Windows 64位元 下載

微軟推出的免費、功能強大的一款IDE編輯器

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

Atom編輯器mac版下載

Atom編輯器mac版下載

最受歡迎的的開源編輯器