本指南示範了使用 Python 將資料有效地插入 AWS DynamoDB,並專注於大型資料集。 我們將介紹:表格建立(如果需要)、隨機資料產生和批量寫入,以實現最佳效能和節省成本。 需要 boto3
庫;使用pip install boto3
安裝它。
1。 DynamoDB 表設定:
首先,我們建立一個 AWS 會話並定義 DynamoDB 表的區域:
import boto3 from botocore.exceptions import ClientError dynamodb = boto3.resource('dynamodb', region_name='us-east-1') table_name = 'My_DynamoDB_Table_Name'
create_table_if_not_exists()
函數檢查表是否存在,如果不存在,則使用主鍵 (id
) 建立它:
def create_table_if_not_exists(): try: table = dynamodb.Table(table_name) table.load() print(f"Table '{table_name}' exists.") return table except ClientError as e: if e.response['Error']['Code'] == 'ResourceNotFoundException': print(f"Creating table '{table_name}'...") table = dynamodb.create_table( TableName=table_name, KeySchema=[{'AttributeName': 'id', 'KeyType': 'HASH'}], AttributeDefinitions=[{'AttributeName': 'id', 'AttributeType': 'S'}], ProvisionedThroughput={'ReadCapacityUnits': 5, 'WriteCapacityUnits': 5} ) table.meta.client.get_waiter('table_exists').wait(TableName=table_name) print(f"Table '{table_name}' created.") return table else: print(f"Error: {e}") raise
2。隨機資料產生:
我們將使用 id
、name
、timestamp
和 value
產生範例記錄:
import random import string from datetime import datetime def generate_random_string(length=10): return ''.join(random.choices(string.ascii_letters + string.digits, k=length)) def generate_record(): return { 'id': generate_random_string(16), 'name': generate_random_string(8), 'timestamp': str(datetime.utcnow()), 'value': random.randint(1, 1000) }
3。批次資料寫入:
batch_write()
函數利用 DynamoDB 的 batch_writer()
進行高效率的批次插入(每批最多 25 個項目):
def batch_write(table, records): with table.batch_writer() as batch: for record in records: batch.put_item(Item=record)
4。主要工作流程:
main函數統籌建表、資料產生、批次寫入:
def main(): table = create_table_if_not_exists() records_batch = [] for i in range(1, 1001): record = generate_record() records_batch.append(record) if len(records_batch) == 25: batch_write(table, records_batch) records_batch = [] print(f"Wrote {i} records") if records_batch: batch_write(table, records_batch) print(f"Wrote remaining {len(records_batch)} records") if __name__ == '__main__': main()
5。結論:
此腳本利用批次寫入來最佳化大量資料的 DynamoDB 互動。 請記住調整參數(批量大小、記錄計數等)以滿足您的特定需求。 考慮探索進階 DynamoDB 功能以進一步增強效能。
以上是使用 Python 高效批量寫入 DynamoDB:逐步指南的詳細內容。更多資訊請關注PHP中文網其他相關文章!

SlicingaPythonlistisdoneusingthesyntaxlist[start:stop:step].Here'showitworks:1)Startistheindexofthefirstelementtoinclude.2)Stopistheindexofthefirstelementtoexclude.3)Stepistheincrementbetweenelements.It'susefulforextractingportionsoflistsandcanuseneg

numpyallowsforvariousoperationsonArrays:1)basicarithmeticlikeaddition,減法,乘法和division; 2)evationAperationssuchasmatrixmultiplication; 3)element-wiseOperations wiseOperationswithOutexpliitloops; 4)

Arresinpython,尤其是Throughnumpyandpandas,weessentialFordataAnalysis,offeringSpeedAndeffied.1)NumpyArseNable efflaysenable efficefliceHandlingAtaSetSetSetSetSetSetSetSetSetSetSetsetSetSetSetSetsopplexoperationslikemovingaverages.2)

列表sandnumpyArraysInpythonHavedIfferentMemoryfootprints:listSaremoreFlexibleButlessMemory-效率,而alenumpyArraySareSareOptimizedFornumericalData.1)listsStorReereReereReereReereFerenceStoObjects,with withOverHeadeBheadaroundAroundaround64byty64-bitsysysysysysysysysyssyssyssyssysssyssys2)

toensurepythonscriptsbehavecorrectlyacrycrosdevelvermations,分期和生產,USETHESTERTATE:1)Environment varriablesForsimplesettings,2)configurationfilesfilesForcomPlexSetups,3)dynamiCofforComplexSetups,dynamiqualloadingForaptaptibality.eachmethodoffersuniquebeneiquebeneqeniquebenefitsandrefitsandrequiresandrequiresandrequiresca

Python列表切片的基本語法是list[start:stop:step]。 1.start是包含的第一個元素索引,2.stop是排除的第一個元素索引,3.step決定元素之間的步長。切片不僅用於提取數據,還可以修改和反轉列表。

ListSoutPerformarRaysin:1)DynamicsizicsizingandFrequentInsertions/刪除,2)儲存的二聚體和3)MemoryFeliceFiceForceforseforsparsedata,butmayhaveslightperformancecostsinclentoperations。

toConvertapythonarraytoalist,usEthelist()constructororageneratorexpression.1)intimpthearraymoduleandcreateanArray.2)USELIST(ARR)或[XFORXINARR] to ConconverTittoalist,請考慮performorefformanceandmemoryfformanceandmemoryfformienceforlargedAtasetset。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

SAP NetWeaver Server Adapter for Eclipse
將Eclipse與SAP NetWeaver應用伺服器整合。

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

SecLists
SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

記事本++7.3.1
好用且免費的程式碼編輯器

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境