搜尋
首頁後端開發Python教學使用 Amazon Bedrock 建立個人化學習伴侶

Building a Personalized Study Companion Using Amazon Bedrock

我現在正在攻讀碩士學位,我一直想找到方法來減少每天的學習時間。瞧!這是我的解決方案:使用 Amazon Bedrock 建立一個學習夥伴。

我們將利用 Amazon Bedrock 來利用 GPT-4 或 T5 等基礎模型 (FM) 的力量。

這些模型將幫助我們創建一個生成式人工智慧,可以回答使用者對我的碩士課程中各種主題的查詢,例如量子物理、機器學習等。我們將探索如何微調模型、實施高階提示工程,並利用檢索增強生成 (RAG) 為學生提供準確的答案。

讓我們開始吧!

第 1 步:在 AWS 上設定您的環境

首先,請確保您的AWS 帳戶已設定有訪問Amazon Bedrock、S3 和Lambda 所需的權限(在我發現必須存入借記卡後,我才了解到這一點:( ) .您將使用Amazon S3、Lambda 和Bedrock 等AWS 服務。

    建立一個S3 Bucket來儲存您的學習材料
  • 這將允許模型存取材料以進行微調和檢索。
  • 前往 Amazon S3 控制台並建立一個新儲存桶,例如「study-materials」。
將教育內容上傳到 S3。就我而言,我創建了合成數據來添加與我的碩士課程相關的數據。您可以根據需要建立自己的資料集或新增 Kaggle 中的其他資料集。


[
    {
        "topic": "Advanced Economics",
        "question": "How does the Lucas Critique challenge traditional macroeconomic policy analysis?",
        "answer": "The Lucas Critique argues that traditional macroeconomic models' parameters are not policy-invariant because economic agents adjust their behavior based on expected policy changes, making historical relationships unreliable for policy evaluation."
    },
    {
        "topic": "Quantum Physics",
        "question": "Explain quantum entanglement and its implications for quantum computing.",
        "answer": "Quantum entanglement is a physical phenomenon where pairs of particles remain fundamentally connected regardless of distance. This property enables quantum computers to perform certain calculations exponentially faster than classical computers through quantum parallelism and superdense coding."
    },
    {
        "topic": "Advanced Statistics",
        "question": "What is the difference between frequentist and Bayesian approaches to statistical inference?",
        "answer": "Frequentist inference treats parameters as fixed and data as random, using probability to describe long-run frequency of events. Bayesian inference treats parameters as random variables with prior distributions, updated through data to form posterior distributions, allowing direct probability statements about parameters."
    },
    {
        "topic": "Machine Learning",
        "question": "How do transformers solve the long-range dependency problem in sequence modeling?",
        "answer": "Transformers use self-attention mechanisms to directly model relationships between all positions in a sequence, eliminating the need for recurrent connections. This allows parallel processing and better capture of long-range dependencies through multi-head attention and positional encodings."
    },
    {
        "topic": "Molecular Biology",
        "question": "What are the implications of epigenetic inheritance for evolutionary theory?",
        "answer": "Epigenetic inheritance challenges the traditional neo-Darwinian model by demonstrating that heritable changes in gene expression can occur without DNA sequence alterations, suggesting a Lamarckian component to evolution through environmentally-induced modifications."
    },
    {
        "topic": "Advanced Computer Architecture",
        "question": "How do non-volatile memory architectures impact traditional memory hierarchy design?",
        "answer": "Non-volatile memory architectures blur the traditional distinction between storage and memory, enabling persistent memory systems that combine storage durability with memory-like performance, requiring fundamental redesign of memory hierarchies and system software."
    }
]

第 2 步:利用 Amazon Bedrock 建立基礎模型

然後啟動 Amazon Bedrock:

    前往 Amazon Bedrock 主機。
  • 建立一個新專案並選擇您想要的基礎模型(例如 GPT-3、T5)。
  • 選擇您的用例,在本例中為學習夥伴。
  • 選擇微調選項(如果需要)並上傳資料集(來自 S3 的教育內容)進行微調。
  • 微調基礎模型:
Bedrock 將自動微調您資料集上的基礎模型。例如,如果您使用 GPT-3,Amazon Bedrock 將對其進行調整,以更好地理解教育內容並為特定主題產生準確的答案。

這是一個使用 Amazon Bedrock SDK 來微調模型的快速 Python 程式碼片段:


import boto3

# Initialize Bedrock client
client = boto3.client("bedrock-runtime")

# Define S3 path for your dataset
dataset_path = 's3://study-materials/my-educational-dataset.json'

# Fine-tune the model
response = client.start_training(
    modelName="GPT-3",
    datasetLocation=dataset_path,
    trainingParameters={"batch_size": 16, "epochs": 5}
)
print(response)

保存微調後的模型:微調後,模型將被保存並準備部署。您可以在 Amazon S3 儲存桶中名為fine-tuned-model 的新資料夾下找到它。

第 3 步:實作檢索增強產生 (RAG)

1。設定 Amazon Lambda 函數:

  • Lambda 將處理請求並與微調模型互動以產生回應。
  • Lambda函數會根據使用者的查詢從S3取得相關學習資料,並使用RAG產生精確的答案。

用於產生答案的 Lambda 程式碼: 以下範例說明如何設定 Lambda 函數以使用微調模型來產生答案:

[
    {
        "topic": "Advanced Economics",
        "question": "How does the Lucas Critique challenge traditional macroeconomic policy analysis?",
        "answer": "The Lucas Critique argues that traditional macroeconomic models' parameters are not policy-invariant because economic agents adjust their behavior based on expected policy changes, making historical relationships unreliable for policy evaluation."
    },
    {
        "topic": "Quantum Physics",
        "question": "Explain quantum entanglement and its implications for quantum computing.",
        "answer": "Quantum entanglement is a physical phenomenon where pairs of particles remain fundamentally connected regardless of distance. This property enables quantum computers to perform certain calculations exponentially faster than classical computers through quantum parallelism and superdense coding."
    },
    {
        "topic": "Advanced Statistics",
        "question": "What is the difference between frequentist and Bayesian approaches to statistical inference?",
        "answer": "Frequentist inference treats parameters as fixed and data as random, using probability to describe long-run frequency of events. Bayesian inference treats parameters as random variables with prior distributions, updated through data to form posterior distributions, allowing direct probability statements about parameters."
    },
    {
        "topic": "Machine Learning",
        "question": "How do transformers solve the long-range dependency problem in sequence modeling?",
        "answer": "Transformers use self-attention mechanisms to directly model relationships between all positions in a sequence, eliminating the need for recurrent connections. This allows parallel processing and better capture of long-range dependencies through multi-head attention and positional encodings."
    },
    {
        "topic": "Molecular Biology",
        "question": "What are the implications of epigenetic inheritance for evolutionary theory?",
        "answer": "Epigenetic inheritance challenges the traditional neo-Darwinian model by demonstrating that heritable changes in gene expression can occur without DNA sequence alterations, suggesting a Lamarckian component to evolution through environmentally-induced modifications."
    },
    {
        "topic": "Advanced Computer Architecture",
        "question": "How do non-volatile memory architectures impact traditional memory hierarchy design?",
        "answer": "Non-volatile memory architectures blur the traditional distinction between storage and memory, enabling persistent memory systems that combine storage durability with memory-like performance, requiring fundamental redesign of memory hierarchies and system software."
    }
]

3。部署 Lambda 函數: 在 AWS 上部署此 Lambda 函數。它將透過API網關呼叫來處理即時用戶查詢。

第 4 步:透過 API 閘道公開模型

建立 API 閘道:

前往 API Gateway 控制台並建立新的 REST API。
設定 POST 端點來呼叫處理答案所產生的 La​​mbda 函數。

部署 API:

部署 API 並使用來自 AWS 的自訂網域或預設 URL 使其可公開存取。

第 5 步:建立 Streamlit 介面

最後,建立一個簡單的 Streamlit 應用程序,以允許用戶與您的學習夥伴互動。

import boto3

# Initialize Bedrock client
client = boto3.client("bedrock-runtime")

# Define S3 path for your dataset
dataset_path = 's3://study-materials/my-educational-dataset.json'

# Fine-tune the model
response = client.start_training(
    modelName="GPT-3",
    datasetLocation=dataset_path,
    trainingParameters={"batch_size": 16, "epochs": 5}
)
print(response)

您可以在 AWS EC2Elastic Beanstalk 上託管此 Streamlit 應用程式

如果一切順利,恭喜你。你剛剛成為了你的學習夥伴。如果我必須評估這個項目,我可以為我的合成數據添加更多示例(廢話?),或者獲取另一個與我的目標完美契合的教育數據集。

感謝您的閱讀!讓我知道你的想法!

以上是使用 Amazon Bedrock 建立個人化學習伴侶的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
我如何使用美麗的湯來解析HTML?我如何使用美麗的湯來解析HTML?Mar 10, 2025 pm 06:54 PM

本文解釋瞭如何使用美麗的湯庫來解析html。 它詳細介紹了常見方法,例如find(),find_all(),select()和get_text(),以用於數據提取,處理不同的HTML結構和錯誤以及替代方案(SEL)

Python中的數學模塊:統計Python中的數學模塊:統計Mar 09, 2025 am 11:40 AM

Python的statistics模塊提供強大的數據統計分析功能,幫助我們快速理解數據整體特徵,例如生物統計學和商業分析等領域。無需逐個查看數據點,只需查看均值或方差等統計量,即可發現原始數據中可能被忽略的趨勢和特徵,並更輕鬆、有效地比較大型數據集。 本教程將介紹如何計算平均值和衡量數據集的離散程度。除非另有說明,本模塊中的所有函數都支持使用mean()函數計算平均值,而非簡單的求和平均。 也可使用浮點數。 import random import statistics from fracti

如何使用TensorFlow或Pytorch進行深度學習?如何使用TensorFlow或Pytorch進行深度學習?Mar 10, 2025 pm 06:52 PM

本文比較了Tensorflow和Pytorch的深度學習。 它詳細介紹了所涉及的步驟:數據準備,模型構建,培訓,評估和部署。 框架之間的關鍵差異,特別是關於計算刻度的

python對象的序列化和避難所化:第1部分python對象的序列化和避難所化:第1部分Mar 08, 2025 am 09:39 AM

Python 對象的序列化和反序列化是任何非平凡程序的關鍵方面。如果您將某些內容保存到 Python 文件中,如果您讀取配置文件,或者如果您響應 HTTP 請求,您都會進行對象序列化和反序列化。 從某種意義上說,序列化和反序列化是世界上最無聊的事情。誰會在乎所有這些格式和協議?您想持久化或流式傳輸一些 Python 對象,並在以後完整地取回它們。 這是一種在概念層面上看待世界的好方法。但是,在實際層面上,您選擇的序列化方案、格式或協議可能會決定程序運行的速度、安全性、維護狀態的自由度以及與其他系

如何解決Linux終端中查看Python版本時遇到的權限問題?如何解決Linux終端中查看Python版本時遇到的權限問題?Apr 01, 2025 pm 05:09 PM

Linux終端中查看Python版本時遇到權限問題的解決方法當你在Linux終端中嘗試查看Python的版本時,輸入python...

用美麗的湯在Python中刮擦網頁:搜索和DOM修改用美麗的湯在Python中刮擦網頁:搜索和DOM修改Mar 08, 2025 am 10:36 AM

該教程建立在先前對美麗湯的介紹基礎上,重點是簡單的樹導航之外的DOM操縱。 我們將探索有效的搜索方法和技術,以修改HTML結構。 一種常見的DOM搜索方法是EX

哪些流行的Python庫及其用途?哪些流行的Python庫及其用途?Mar 21, 2025 pm 06:46 PM

本文討論了諸如Numpy,Pandas,Matplotlib,Scikit-Learn,Tensorflow,Tensorflow,Django,Blask和請求等流行的Python庫,並詳細介紹了它們在科學計算,數據分析,可視化,機器學習,網絡開發和H中的用途

如何使用Python創建命令行接口(CLI)?如何使用Python創建命令行接口(CLI)?Mar 10, 2025 pm 06:48 PM

本文指導Python開發人員構建命令行界面(CLIS)。 它使用Typer,Click和ArgParse等庫詳細介紹,強調輸入/輸出處理,並促進用戶友好的設計模式,以提高CLI可用性。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
2 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
2 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
2 週前By尊渡假赌尊渡假赌尊渡假赌

熱工具

SublimeText3 英文版

SublimeText3 英文版

推薦:為Win版本,支援程式碼提示!

VSCode Windows 64位元 下載

VSCode Windows 64位元 下載

微軟推出的免費、功能強大的一款IDE編輯器

MantisBT

MantisBT

Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

WebStorm Mac版

WebStorm Mac版

好用的JavaScript開發工具

EditPlus 中文破解版

EditPlus 中文破解版

體積小,語法高亮,不支援程式碼提示功能