如何在 FastAPI POST 請求中同時新增檔案和 JSON 正文?
在 FastAPI 中,您無法同時傳送 JSON 資料和檔案如果您將正文宣告為 JSON,則為單一請求。相反,您需要使用 multipart/form-data 編碼。以下是幾個實現此目的的方法:
方法1:使用檔案和表單
# Assuming you have a DataConfiguration model for the JSON data from fastapi import FastAPI, File, UploadFile from pydantic import BaseModel app = FastAPI() class DataConfiguration(BaseModel): textColumnNames: list[str] idColumn: str @app.post("/data") async def data(dataConfiguration: DataConfiguration, csvFile: UploadFile = File(...)): pass # read requested id and text columns from csvFile
方法2:使用Pydantic 模型和依賴項
from fastapi import FastAPI, Form, File, UploadFile, Depends, Request from pydantic import BaseModel from typing import List, Optional, Dict from fastapi.responses import HTMLResponse from fastapi.templating import Jinja2Templates app = FastAPI() templates = Jinja2Templates(directory="templates") class Base(BaseModel): name: str point: Optional[float] = None is_accepted: Optional[bool] = False def validate_json_body(body: str = Form(...)): try: return Base.model_validate_json(body) except ValidationError as e: raise HTTPException( detail=jsonable_encoder(e.errors()), status_code=422, ) @app.post("/submit") async def submit(base: Base = Depends(validate_json_body), files: List[UploadFile] = File(...)): return { "JSON Payload": base, "Filenames": [file.filename for file in files], } @app.get("/", response_class=HTMLResponse) async def main(request: Request): return templates.TemplateResponse("index.html", {"request": request})
方法3:將JSON傳遞為Body參數中的字符串
from fastapi import FastAPI, Form, UploadFile, File from pydantic import BaseModel class Base(BaseModel): name: str point: float is_accepted: bool app = FastAPI() @app.post("/submit") async def submit(data: Base = Form(...), files: List[UploadFile] = File(...)): return { "JSON Payload": data, "Filenames": [file.filename for file in files], }
方法四:使用自定義類驗證JSON
from fastapi import FastAPI, File, UploadFile, Request from pydantic import BaseModel, model_validator from typing import Optional, List from fastapi.responses import HTMLResponse from fastapi.templating import Jinja2Templates import json app = FastAPI() templates = Jinja2Templates(directory="templates") class Base(BaseModel): name: str point: Optional[float] = None is_accepted: Optional[bool] = False @model_validator(mode='before') @classmethod def validate_to_json(cls, value): if isinstance(value, str): return cls(**json.loads(value)) return value @app.post("/submit") async def submit(data: Base = Body(...), files: List[UploadFile] = File(...)): return { "JSON Payload": data, "Filenames": [file.filename for file in files], } @app.get("/", response_class=HTMLResponse) async def main(request: Request): return templates.TemplateResponse("index.html", context={"request": request})
注意:中方法1,您可以同時使用File 和Form 類,因為Form 是Body 的子類別。但是,如果您在方法 1 中使用 Body(...) 而不是 Form(...),它將不起作用,因為 FastAPI 會期望 JSON 資料位於請求正文中,而不是表單資料。
以上是如何在 FastAPI POST 請求中同時提交 JSON 和文件?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。

Python在Web開發中的關鍵應用包括使用Django和Flask框架、API開發、數據分析與可視化、機器學習與AI、以及性能優化。 1.Django和Flask框架:Django適合快速開發複雜應用,Flask適用於小型或高度自定義項目。 2.API開發:使用Flask或DjangoRESTFramework構建RESTfulAPI。 3.數據分析與可視化:利用Python處理數據並通過Web界面展示。 4.機器學習與AI:Python用於構建智能Web應用。 5.性能優化:通過異步編程、緩存和代碼優

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。

Python在現實世界中的應用包括數據分析、Web開發、人工智能和自動化。 1)在數據分析中,Python使用Pandas和Matplotlib處理和可視化數據。 2)Web開發中,Django和Flask框架簡化了Web應用的創建。 3)人工智能領域,TensorFlow和PyTorch用於構建和訓練模型。 4)自動化方面,Python腳本可用於復製文件等任務。

Python在數據科學、Web開發和自動化腳本領域廣泛應用。 1)在數據科學中,Python通過NumPy、Pandas等庫簡化數據處理和分析。 2)在Web開發中,Django和Flask框架使開發者能快速構建應用。 3)在自動化腳本中,Python的簡潔性和標準庫使其成為理想選擇。

Python的靈活性體現在多範式支持和動態類型系統,易用性則源於語法簡潔和豐富的標準庫。 1.靈活性:支持面向對象、函數式和過程式編程,動態類型系統提高開發效率。 2.易用性:語法接近自然語言,標準庫涵蓋廣泛功能,簡化開發過程。

Python因其簡潔與強大而備受青睞,適用於從初學者到高級開發者的各種需求。其多功能性體現在:1)易學易用,語法簡單;2)豐富的庫和框架,如NumPy、Pandas等;3)跨平台支持,可在多種操作系統上運行;4)適合腳本和自動化任務,提升工作效率。

可以,在每天花費兩個小時的時間內學會Python。 1.制定合理的學習計劃,2.選擇合適的學習資源,3.通過實踐鞏固所學知識,這些步驟能幫助你在短時間內掌握Python。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

VSCode Windows 64位元 下載
微軟推出的免費、功能強大的一款IDE編輯器

MantisBT
Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境

Dreamweaver Mac版
視覺化網頁開發工具

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。