請我喝杯咖啡☕
*我的貼文解釋了 MS COCO。
CocoDetection()可以使用MS COCO資料集,如下所示:
*備忘錄:
- 第一個參數是root(必要類型:str或pathlib.Path):
*備註:
- 這是影像的路徑。
- 絕對或相對路徑都是可能的。
- 第二個參數是 annFile(必要型別:str 或 pathlib.Path):
*備註:
- 這是註解的路徑。
- 絕對或相對路徑都是可能的。
- 第三個參數是transform(Optional-Default:None-Type:callable)。
- 第四個參數是 target_transform(Optional-Default:None-Type:callable)。
- 第五個參數是transforms(Optional-Default:None-Type:callable)。
from torchvision.datasets import CocoDetection cap_train2014_data = CocoDetection( root="data/coco/imgs/train2014", annFile="data/coco/anns/trainval2014/captions_train2014.json" ) cap_train2014_data = CocoDetection( root="data/coco/imgs/train2014", annFile="data/coco/anns/trainval2014/captions_train2014.json", transform=None, target_transform=None, transforms=None ) ins_train2014_data = CocoDetection( root="data/coco/imgs/train2014", annFile="data/coco/anns/trainval2014/instances_train2014.json" ) pk_train2014_data = CocoDetection( root="data/coco/imgs/train2014", annFile="data/coco/anns/trainval2014/person_keypoints_train2014.json" ) len(cap_train2014_data), len(ins_train2014_data), len(pk_train2014_data) # (82783, 82783, 82783) cap_val2014_data = CocoDetection( root="data/coco/imgs/val2014", annFile="data/coco/anns/trainval2014/captions_val2014.json" ) ins_val2014_data = CocoDetection( root="data/coco/imgs/val2014", annFile="data/coco/anns/trainval2014/instances_val2014.json" ) pk_val2014_data = CocoDetection( root="data/coco/imgs/val2014", annFile="data/coco/anns/trainval2014/person_keypoints_val2014.json" ) len(cap_val2014_data), len(ins_val2014_data), len(pk_val2014_data) # (40504, 40504, 40504) test2014_data = CocoDetection( root="data/coco/imgs/test2014", annFile="data/coco/anns/test2014/test2014.json" ) test2015_data = CocoDetection( root="data/coco/imgs/test2015", annFile="data/coco/anns/test2015/test2015.json" ) testdev2015_data = CocoDetection( root="data/coco/imgs/test2015", annFile="data/coco/anns/test2015/test-dev2015.json" ) len(test2014_data), len(test2015_data), len(testdev2015_data) # (40775, 81434, 20288) cap_train2014_data # Dataset CocoDetection # Number of datapoints: 82783 # Root location: data/coco/imgs/train2014 cap_train2014_data.root # 'data/coco/imgs/train2014' print(cap_train2014_data.transform) # None print(cap_train2014_data.target_transform) # None print(cap_train2014_data.transforms) # None cap_train2014_data[0] # (<pil.image.image image mode="RGB" size="640x480">, # [{'image_id': 9, 'id': 661611, # 'caption': 'Closeup of bins of food that include broccoli and bread.'}, # {'image_id': 9, 'id': 661977, # 'caption': 'A meal is presented in brightly colored plastic trays.'}, # {'image_id': 9, 'id': 663627, # 'caption': 'there are containers filled with different kinds of foods'}, # {'image_id': 9, 'id': 666765, # 'caption': 'Colorful dishes holding meat, vegetables, fruit, and bread.'}, # {'image_id': 9, 'id': 667602, # 'caption': 'A bunch of trays that have different food.'}]) cap_train2014_data[1] # (<pil.image.image image mode="RGB" size="640x426">, # [{'image_id': 25, 'id': 122312, # 'caption': 'A giraffe eating food from the top of the tree.'}, # {'image_id': 25, 'id': 127076, # 'caption': 'A giraffe standing up nearby a tree '}, # {'image_id': 25, 'id': 127238, # 'caption': 'A giraffe mother with its baby in the forest.'}, # {'image_id': 25, 'id': 133058, # 'caption': 'Two giraffes standing in a tree filled area.'}, # {'image_id': 25, 'id': 133676, # 'caption': 'A giraffe standing next to a forest filled with trees.'}]) cap_train2014_data[2] # (<pil.image.image image mode="RGB" size="640x428">, # [{'image_id': 30, 'id': 695774, # 'caption': 'A flower vase is sitting on a porch stand.'}, # {'image_id': 30, 'id': 696557, # 'caption': 'White vase with different colored flowers sitting inside of it. '}, # {'image_id': 30, 'id': 699041, # 'caption': 'a white vase with many flowers on a stage'}, # {'image_id': 30, 'id': 701216, # 'caption': 'A white vase filled with different colored flowers.'}, # {'image_id': 30, 'id': 702428, # 'caption': 'A vase with red and white flowers outside on a sunny day.'}]) ins_train2014_data[0] # (<pil.image.image image mode="RGB" size="640x480">, # [{'segmentation': [[500.49, 473.53, 599.73, ..., 20.49, 473.53]], # 'area': 120057.13925, 'iscrowd': 0, 'image_id': 9, # 'bbox': [1.08, 187.69, 611.59, 285.84], 'category_id': 51, # 'id': 1038967}, # {'segmentation': ..., 'category_id': 51, 'id': 1039564}, # ..., # {'segmentation': ..., 'category_id': 55, 'id': 1914001}]) ins_train2014_data[1] # (<pil.image.image image mode="RGB" size="640x426">, # [{'segmentation': [[437.52, 353.33, 437.87, ..., 437.87, 357.19]], # 'area': 19686.597949999996, 'iscrowd': 0, 'image_id': 25, # 'bbox': [385.53, 60.03, 214.97, 297.16], 'category_id': 25, # 'id': 598548}, # {'segmentation': [[99.26, 405.72, 133.57, ..., 97.77, 406.46]], # 'area': 2785.8475500000004, 'iscrowd': 0, 'image_id': 25, # 'bbox': [53.01, 356.49, 132.03, 55.19], 'category_id': 25, # 'id': 599491}]) ins_train2014_data[2] # (<pil.image.image image mode="RGB" size="640x428">, # [{'segmentation': [[267.38, 330.14, 281.81, ..., 269.3, 329.18]], # 'area': 47675.66289999999, 'iscrowd': 0, 'image_id': 30, # 'bbox': [204.86, 31.02, 254.88, 324.12], 'category_id': 64, # 'id': 291613}, # {'segmentation': [[394.34, 155.81, 403.96, ..., 393.38, 157.73]], # 'area': 16202.798250000003, 'iscrowd': 0, 'image_id': 30, # 'bbox': [237.56, 155.81, 166.4, 195.25], 'category_id': 86, # 'id': 1155486}]) pk_train2014_data[0] # (<pil.image.image image mode="RGB" size="640x480">, []) pk_train2014_data[1] # (<pil.image.image image mode="RGB" size="640x426">, []) pk_train2014_data[2] # (<pil.image.image image mode="RGB" size="640x428">, []) cap_val2014_data[0] # (<pil.image.image image mode="RGB" size="640x478">, # [{'image_id': 42, 'id': 641613, # 'caption': 'This wire metal rack holds several pairs of shoes and sandals'}, # {'image_id': 42, 'id': 645309, # 'caption': 'A dog sleeping on a show rack in the shoes.'}, # {'image_id': 42, 'id': 650217, # 'caption': 'Various slides and other footwear rest in a metal basket outdoors.'}, # {'image_id': 42, # 'id': 650868, # 'caption': 'A small dog is curled up on top of the shoes'}, # {'image_id': 42, # 'id': 652383, # 'caption': 'a shoe rack with some shoes and a dog sleeping on them'}]) cap_val2014_data[1] # (<pil.image.image image mode="RGB" size="565x640">, # [{'image_id': 73, 'id': 593422, # 'caption': 'A motorcycle parked in a parking space next to another motorcycle.'}, # {'image_id': 73, 'id': 746071, # 'caption': 'An old motorcycle parked beside other motorcycles with a brown leather seat.'}, # {'image_id': 73, 'id': 746170, # 'caption': 'Motorcycle parked in the parking lot of asphalt.'}, # {'image_id': 73, 'id': 746914, # 'caption': 'A close up view of a motorized bicycle, sitting in a rack. '}, # {'image_id': 73, 'id': 748185, # 'caption': 'The back tire of an old style motorcycle is resting in a metal stand. '}]) cap_val2014_data[2] # (<pil.image.image image mode="RGB" size="640x426">, # [{'image_id': 74, 'id': 145996, # 'caption': 'A picture of a dog laying on the ground.'}, # {'image_id': 74, 'id': 146710, # 'caption': 'Dog snoozing by a bike on the edge of a cobblestone street'}, # {'image_id': 74, 'id': 149398, # 'caption': 'The white dog lays next to the bicycle on the sidewalk.'}, # {'image_id': 74, 'id': 149638, # 'caption': 'a white dog is sleeping on a street and a bicycle'}, # {'image_id': 74, 'id': 150181, # 'caption': 'A puppy rests on the street next to a bicycle.'}]) ins_val2014_data[0] # (<pil.image.image image mode="RGB" size="640x478">, # [{'segmentation': [[382.48, 268.63, 330.24, ..., 394.09, 264.76]], # 'area': 53481.5118, 'iscrowd': 0, 'image_id': 42, # 'bbox': [214.15, 41.29, 348.26, 243.78], 'category_id': 18, # 'id': 1817255}]) ins_val2014_data[1] # (<pil.image.image image mode="RGB" size="565x640">, # [{'segmentation': [[134.36, 145.55, 117.02, ..., 138.69, 141.22]], # 'area': 172022.43864999997, 'iscrowd': 0, 'image_id': 73, # 'bbox': [13.0, 22.75, 535.98, 609.67], 'category_id': 4, # 'id': 246920}, # {'segmentation': [[202.28, 4.97, 210.57, 26.53, ..., 192.33, 3.32]], # 'area': 52666.3402, 'iscrowd': 0, 'image_id': 73, # 'bbox': [1.66, 3.32, 268.6, 271.91], 'category_id': 4, # 'id': 2047387}]) ins_val2014_data[2] # (<pil.image.image image mode="RGB" size="640x426">, # [{'segmentation': [[321.02, 321.0, 314.25, ..., 320.57, 322.86]], # 'area': 18234.62355, 'iscrowd': 0, 'image_id': 74, # 'bbox': [61.87, 276.25, 296.42, 103.18], 'category_id': 18, # 'id': 1774}, # {'segmentation': ..., 'category_id': 2, 'id': 128367}, # ... # {'segmentation': ..., 'category_id': 1, 'id': 1751664}]) pk_val2014_data[0] # (<pil.image.image image mode="RGB" size="640x478">, []) pk_val2014_data[1] # (<pil.image.image image mode="RGB" size="565x640">, []) pk_val2014_data[2] # (<pil.image.image image mode="RGB" size="640x426">, # [{'segmentation': [[301.32, 93.96, 305.72, ..., 299.67, 94.51]], # 'num_keypoints': 0, 'area': 638.7158, 'iscrowd': 0, # 'keypoints': [0, 0, 0, 0, ..., 0, 0], 'image_id': 74, # 'bbox': [295.55, 93.96, 18.42, 58.83], 'category_id': 1, # 'id': 195946}, # {'segmentation': ..., 'category_id': 1, 'id': 253933}, # ... # {'segmentation': ..., 'category_id': 1, 'id': 1751664}]) test2014_data[0] # (<pil.image.image image mode="RGB" size="640x480">, []) test2014_data[1] # (<pil.image.image image mode="RGB" size="480x640">, []) test2014_data[2] # (<pil.image.image image mode="RGB" size="480x640">, []) test2015_data[0] # (<pil.image.image image mode="RGB" size="640x480">, []) test2015_data[1] # (<pil.image.image image mode="RGB" size="480x640">, []) test2015_data[2] # (<pil.image.image image mode="RGB" size="480x640">, []) testdev2015_data[0] # (<pil.image.image image mode="RGB" size="640x480">, []) testdev2015_data[1] # (<pil.image.image image mode="RGB" size="480x640">, []) testdev2015_data[2] # (<pil.image.image image mode="RGB" size="640x427">, []) import matplotlib.pyplot as plt from matplotlib.patches import Polygon, Rectangle import torch def show_images(data, main_title=None): file = data.root.split('/')[-1] if data[0][1] and "caption" in data[0][1][0]: if file == "train2014": plt.figure(figsize=(14, 5)) plt.suptitle(t=main_title, y=0.9, fontsize=14) x_axis = 0.02 x_axis_incr = 0.325 fs = 10.5 elif file == "val2014": plt.figure(figsize=(14, 6.5)) plt.suptitle(t=main_title, y=0.94, fontsize=14) x_axis = 0.01 x_axis_incr = 0.32 fs = 9.4 for i, (im, ann) in zip(range(1, 4), data): plt.subplot(1, 3, i) plt.imshow(X=im) plt.title(label=ann[0]["image_id"]) y_axis = 0.0 for j in range(0, 5): plt.figtext(x=x_axis, y=y_axis, fontsize=fs, s=f'{ann[j]["id"]}:\n{ann[j]["caption"]}') if file == "train2014": y_axis -= 0.1 elif file == "val2014": y_axis -= 0.07 x_axis += x_axis_incr if i == 2 and file == "val2014": x_axis += 0.06 plt.tight_layout() plt.show() elif data[0][1] and "segmentation" in data[0][1][0]: if file == "train2014": fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(14, 4)) elif file == "val2014": fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(14, 5)) fig.suptitle(t=main_title, y=1.0, fontsize=14) for (im, anns), axis in zip(data, axes.ravel()): for ann in anns: for seg in ann['segmentation']: seg_tsors = torch.tensor(seg).split(2) seg_lists = [seg_tsor.tolist() for seg_tsor in seg_tsors] poly = Polygon(xy=seg_lists, facecolor="lightgreen", alpha=0.7) axis.add_patch(p=poly) px = [] py = [] for j, v in enumerate(seg): if j%2 == 0: px.append(v) else: py.append(v) axis.plot(px, py, color='yellow') x, y, w, h = ann['bbox'] rect = Rectangle(xy=(x, y), width=w, height=h, linewidth=3, edgecolor='r', facecolor='none', zorder=2) axis.add_patch(p=rect) axis.imshow(X=im) axis.set_title(label=anns[0]["image_id"]) fig.tight_layout() plt.show() elif not data[0][1]: if file == "train2014": plt.figure(figsize=(14, 5)) plt.suptitle(t=main_title, y=0.9, fontsize=14) elif file == "val2014": plt.figure(figsize=(14, 5)) plt.suptitle(t=main_title, y=1.05, fontsize=14) elif file == "test2014" or "test2015": plt.figure(figsize=(14, 8)) plt.suptitle(t=main_title, y=0.9, fontsize=14) for i, (im, _) in zip(range(1, 4), data): plt.subplot(1, 3, i) plt.imshow(X=im) plt.tight_layout() plt.show() show_images(data=cap_train2014_data, main_title="cap_train2014_data") show_images(data=ins_train2014_data, main_title="ins_train2014_data") show_images(data=pk_train2014_data, main_title="pk_train2014_data") show_images(data=cap_val2014_data, main_title="cap_val2014_data") show_images(data=ins_val2014_data, main_title="ins_val2014_data") show_images(data=pk_val2014_data, main_title="pk_val2014_data") show_images(data=test2014_data, main_title="test2014_data") show_images(data=test2015_data, main_title="test2015_data") show_images(data=testdev2015_data, main_title="testdev2015_data") </pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image>
以上是PyTorch 中的 CocoDetection (1)的詳細內容。更多資訊請關注PHP中文網其他相關文章!

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。

Python在Web開發中的關鍵應用包括使用Django和Flask框架、API開發、數據分析與可視化、機器學習與AI、以及性能優化。 1.Django和Flask框架:Django適合快速開發複雜應用,Flask適用於小型或高度自定義項目。 2.API開發:使用Flask或DjangoRESTFramework構建RESTfulAPI。 3.數據分析與可視化:利用Python處理數據並通過Web界面展示。 4.機器學習與AI:Python用於構建智能Web應用。 5.性能優化:通過異步編程、緩存和代碼優

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。

Python在現實世界中的應用包括數據分析、Web開發、人工智能和自動化。 1)在數據分析中,Python使用Pandas和Matplotlib處理和可視化數據。 2)Web開發中,Django和Flask框架簡化了Web應用的創建。 3)人工智能領域,TensorFlow和PyTorch用於構建和訓練模型。 4)自動化方面,Python腳本可用於復製文件等任務。

Python在數據科學、Web開發和自動化腳本領域廣泛應用。 1)在數據科學中,Python通過NumPy、Pandas等庫簡化數據處理和分析。 2)在Web開發中,Django和Flask框架使開發者能快速構建應用。 3)在自動化腳本中,Python的簡潔性和標準庫使其成為理想選擇。

Python的靈活性體現在多範式支持和動態類型系統,易用性則源於語法簡潔和豐富的標準庫。 1.靈活性:支持面向對象、函數式和過程式編程,動態類型系統提高開發效率。 2.易用性:語法接近自然語言,標準庫涵蓋廣泛功能,簡化開發過程。

Python因其簡潔與強大而備受青睞,適用於從初學者到高級開發者的各種需求。其多功能性體現在:1)易學易用,語法簡單;2)豐富的庫和框架,如NumPy、Pandas等;3)跨平台支持,可在多種操作系統上運行;4)適合腳本和自動化任務,提升工作效率。

可以,在每天花費兩個小時的時間內學會Python。 1.制定合理的學習計劃,2.選擇合適的學習資源,3.通過實踐鞏固所學知識,這些步驟能幫助你在短時間內掌握Python。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

PhpStorm Mac 版本
最新(2018.2.1 )專業的PHP整合開發工具

SublimeText3 Linux新版
SublimeText3 Linux最新版

VSCode Windows 64位元 下載
微軟推出的免費、功能強大的一款IDE編輯器

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境

記事本++7.3.1
好用且免費的程式碼編輯器