請我喝杯咖啡☕
*備忘錄:
- 我的帖子解釋了 pow()。
- 我的貼文解釋了 float_power()。
- 我的帖子解釋了abs()和sqrt()。
- 我的帖子解釋了 gcd() 和 lcm()。
- 我的貼文解釋了trace()、reciprocal() 和rsqrt()。
square() 可以得到零個或多個元素平方的 0D 或多個 D 張量,得到零個或多個元素的 0D 或多個 D 張量如下所示:
*備忘錄:
- square() 可以與火炬或張量一起使用。
- 第一個參數(輸入)使用 torch 或使用張量(必需類型:int、float、complex 或 bool 的張量)。
- torch 存在 out 參數(可選-預設:無-型別:張量):
*備註:
- 必須使用 out=。
- 我的貼文解釋了論點。
import torch my_tensor = torch.tensor(-3) torch.square(input=my_tensor) my_tensor.square() # tensor(9) my_tensor = torch.tensor([-3, 1, -2, 3, 5, -5, 0, -4]) torch.square(input=my_tensor) # tensor([9, 1, 4, 9, 25, 25, 0, 16]) my_tensor = torch.tensor([[-3, 1, -2, 3], [5, -5, 0, -4]]) torch.square(input=my_tensor) # tensor([[9, 1, 4, 9], # [25, 25, 0, 16]]) my_tensor = torch.tensor([[[-3, 1], [-2, 3]], [[5, -5], [0, -4]]]) torch.square(input=my_tensor) # tensor([[[9, 1], [4, 9]], # [[25, 25], [0, 16]]]) my_tensor = torch.tensor([[[-3., 1.], [-2., 3.]], [[5., -5.], [0., -4.]]]) torch.square(input=my_tensor) # tensor([[[9., 1.], [4., 9.]], # [[25., 25.], [0., 16.]]]) my_tensor = torch.tensor([[[-3.+0.j, 1.+0.j], [-2.+0.j, 3.+0.j]], [[5.+0.j, -5.+0.j], [0.+0.j, -4.+0.j]]]) torch.square(input=my_tensor) # tensor([[[9.-0.j, 1.+0.j], [4.-0.j, 9.+0.j]], # [[25.+0.j, 25.-0.j], [0.+0.j, 16.-0.j]]]) my_tensor = torch.tensor([[[True, False], [True, False]], [[False, True], [False, True]]]) torch.square(input=my_tensor) # tensor([[[1, 0], [1, 0]], # [[0, 1], [0, 1]]])
以上是PyTorch 中的正方形的詳細內容。更多資訊請關注PHP中文網其他相關文章!

ArraySareAryallyMoremory-Moremory-forigationDataDatueTotheIrfixed-SizenatureAntatureAntatureAndirectMemoryAccess.1)arraysStorelelementsInAcontiguxufulock,ReducingOveringOverheadHeadefromenterSormetormetAdata.2)列表,通常

ToconvertaPythonlisttoanarray,usethearraymodule:1)Importthearraymodule,2)Createalist,3)Usearray(typecode,list)toconvertit,specifyingthetypecodelike'i'forintegers.Thisconversionoptimizesmemoryusageforhomogeneousdata,enhancingperformanceinnumericalcomp

Python列表可以存儲不同類型的數據。示例列表包含整數、字符串、浮點數、布爾值、嵌套列表和字典。列表的靈活性在數據處理和原型設計中很有價值,但需謹慎使用以確保代碼的可讀性和可維護性。

Pythondoesnothavebuilt-inarrays;usethearraymoduleformemory-efficienthomogeneousdatastorage,whilelistsareversatileformixeddatatypes.Arraysareefficientforlargedatasetsofthesametype,whereaslistsofferflexibilityandareeasiertouseformixedorsmallerdatasets.

theSostCommonlyusedModuleForCreatingArraysInpyThonisnumpy.1)NumpyProvidEseffitedToolsForarrayOperations,Idealfornumericaldata.2)arraysCanbeCreatedDusingsnp.Array()for1dand2Structures.3)

toAppendElementStoApythonList,usetheappend()方法forsingleements,Extend()formultiplelements,andinsert()forspecificpositions.1)useeAppend()foraddingoneOnelementAttheend.2)useextendTheEnd.2)useextendexendExendEnd(

TocreateaPythonlist,usesquarebrackets[]andseparateitemswithcommas.1)Listsaredynamicandcanholdmixeddatatypes.2)Useappend(),remove(),andslicingformanipulation.3)Listcomprehensionsareefficientforcreatinglists.4)Becautiouswithlistreferences;usecopy()orsl

金融、科研、医疗和AI等领域中,高效存储和处理数值数据至关重要。1)在金融中,使用内存映射文件和NumPy库可显著提升数据处理速度。2)科研领域,HDF5文件优化数据存储和检索。3)医疗中,数据库优化技术如索引和分区提高数据查询性能。4)AI中,数据分片和分布式训练加速模型训练。通过选择适当的工具和技术,并权衡存储与处理速度之间的trade-off,可以显著提升系统性能和可扩展性。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

Atom編輯器mac版下載
最受歡迎的的開源編輯器

記事本++7.3.1
好用且免費的程式碼編輯器

SecLists
SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

SublimeText3漢化版
中文版,非常好用

mPDF
mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),