請我喝杯咖啡☕
*備忘錄:
- 我的帖子解釋了 square()。
- 我的貼文解釋了 float_power()。
- 我的帖子解釋了abs()和sqrt()。
- 我的帖子解釋了 gcd() 和 lcm()。
- 我的貼文解釋了trace()、reciprocal() 和rsqrt()。
pow() 可以從零個或多個元素的0D 或多個D 張量中的兩個或零個或多個元素的0D 或多個D 張量和標量中獲得零次或多次冪的0D 或多個D 張量,如圖所示下圖:
*備忘錄:
- pow() 可與 torch 或張量一起使用。
- 第一個參數(輸入)帶有 torch(必要類型:int、float 或complex 的張量或標量)或使用張量(必要類型:int、float 或complex 的張量)。 *torch 必須使用沒有輸入的標量=。
- 帶有 torch 的第二個參數或帶有張量的第一個參數是指數(必需類型:張量或整數、浮點數或複數的標量)。 *不能使用負標量。
- torch 存在 out 參數(可選-預設:無-型別:張量):
*備註:
- 必須使用 out=。
- 我的貼文解釋了論點。
- 不能使用標量(輸入或張量)和標量(指數)的組合。
- 張量(輸入(bool)或張量(bool))和標量(指數(bool))的組合有效。
import torch tensor1 = torch.tensor(-3) tensor2 = torch.tensor([-4, -3, -2, -1, 0, 1, 2, 3]) torch.pow(input=tensor1, exponent=tensor2) tensor1.pow(exponent=tensor2) # tensor([0, 0, 0, 0, 1, -3, 9, -27]) torch.pow(-3, exponent=tensor2) # tensor([0, 0, 0, 0, 1, -3, 9, -27]) torch.pow(input=tensor1, exponent=3) # tensor(-27) tensor1 = torch.tensor([-3, 1, -2, 3, 5, -5, 0, -4]) tensor2 = torch.tensor([-4, -3, -2, -1, 0, 1, 2, 3]) torch.pow(input=tensor1, exponent=tensor2) # tensor([0, 1, 0, 0, 1, -5, 0, -64]) torch.pow(-3, exponent=tensor2) # tensor([0, 0, 0, 0, 1, -3, 9, -27]) torch.pow(input=tensor1, exponent=3) # tensor([-27, 1, -8, 27, 125, -125, 0, -64]) tensor1 = torch.tensor([[-3, 1, -2, 3], [5, -5, 0, -4]]) tensor2 = torch.tensor([0, 1, 2, 3]) torch.pow(input=tensor1, exponent=tensor2) # tensor([[1, 1, 4, 27], [1, -5, 0, -64]]) torch.pow(-3, exponent=tensor2) # tensor([1, -3, 9, -27]) torch.pow(input=tensor1, exponent=3) # tensor([[-27, 1, -8, 27], [125, -125, 0, -64]]) tensor1 = torch.tensor([[[-3, 1], [-2, 3]], [[5, -5], [0, -4]]]) tensor2 = torch.tensor([2, 3]) torch.pow(input=tensor1, exponent=tensor2) # tensor([[[9, 1], [4, 27]], # [[25, -125], [0, -64]]]) torch.pow(-3, exponent=tensor2) # tensor([9, -27]) torch.pow(input=tensor1, exponent=3) # tensor([[[-27, 1], [-8, 27]], # [[125, -125], [0, -64]]]) tensor1 = torch.tensor([[[-3., 1.], [-2., 3.]], [[5., -5.], [0., -4.]]]) tensor2 = torch.tensor([2., 3.]) torch.pow(input=tensor1, exponent=tensor2) # tensor([[[9., 1.], [4., 27.]], # [[25., -125.], [0., -64.]]]) torch.pow(-3., exponent=tensor2) # tensor([9., -27.]) torch.pow(input=tensor1, exponent=3.) # tensor([[[-27., 1.], [-8., 27.]], # [[125., -125.], [0., -64.]]]) tensor1 = torch.tensor([[[-3.+0.j, 1.+0.j], [-2.+0.j, 3.+0.j]], [[5.+0.j, -5.+0.j], [0.+0.j, -4.+0.j]]]) tensor2 = torch.tensor([2.+0.j, 3.+0.j]) torch.pow(input=tensor1, exponent=tensor2) # tensor([[[9.0000+1.5736e-06j, 1.0000+0.0000e+00j], # [4.0000+6.9938e-07j, 27.0000+0.0000e+00j]], # [[25.0000+0.0000e+00j, -125.0000-2.9812e-06j], # [0.0000-0.0000e+00j, -64.0000-1.5264e-06j]]]) torch.pow(-3.+0.j, exponent=tensor2) # tensor([9.0000+1.5736e-06j, -27.0000-6.4394e-07j]) torch.pow(input=tensor1, exponent=3.+0.j) # tensor([[[-27.+0.j, 1.+0.j], # [-8.+0.j, 27.+0.j]], # [[125.+0.j, -125.+0.j], # [0.+0.j, -64.+0.j]]]) my_tensor = torch.tensor([[[True, False], [True, False]], [[False, True], [False, True]]]) torch.pow(input=my_tensor, exponent=True) # tensor([[[True, False], [True, False]], # [[False, True], [False, True]]])
以上是PyTorch 中的 pow的詳細內容。更多資訊請關注PHP中文網其他相關文章!

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。

Python在Web開發中的關鍵應用包括使用Django和Flask框架、API開發、數據分析與可視化、機器學習與AI、以及性能優化。 1.Django和Flask框架:Django適合快速開發複雜應用,Flask適用於小型或高度自定義項目。 2.API開發:使用Flask或DjangoRESTFramework構建RESTfulAPI。 3.數據分析與可視化:利用Python處理數據並通過Web界面展示。 4.機器學習與AI:Python用於構建智能Web應用。 5.性能優化:通過異步編程、緩存和代碼優

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。

Python在現實世界中的應用包括數據分析、Web開發、人工智能和自動化。 1)在數據分析中,Python使用Pandas和Matplotlib處理和可視化數據。 2)Web開發中,Django和Flask框架簡化了Web應用的創建。 3)人工智能領域,TensorFlow和PyTorch用於構建和訓練模型。 4)自動化方面,Python腳本可用於復製文件等任務。

Python在數據科學、Web開發和自動化腳本領域廣泛應用。 1)在數據科學中,Python通過NumPy、Pandas等庫簡化數據處理和分析。 2)在Web開發中,Django和Flask框架使開發者能快速構建應用。 3)在自動化腳本中,Python的簡潔性和標準庫使其成為理想選擇。

Python的靈活性體現在多範式支持和動態類型系統,易用性則源於語法簡潔和豐富的標準庫。 1.靈活性:支持面向對象、函數式和過程式編程,動態類型系統提高開發效率。 2.易用性:語法接近自然語言,標準庫涵蓋廣泛功能,簡化開發過程。

Python因其簡潔與強大而備受青睞,適用於從初學者到高級開發者的各種需求。其多功能性體現在:1)易學易用,語法簡單;2)豐富的庫和框架,如NumPy、Pandas等;3)跨平台支持,可在多種操作系統上運行;4)適合腳本和自動化任務,提升工作效率。

可以,在每天花費兩個小時的時間內學會Python。 1.制定合理的學習計劃,2.選擇合適的學習資源,3.通過實踐鞏固所學知識,這些步驟能幫助你在短時間內掌握Python。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

Dreamweaver CS6
視覺化網頁開發工具

WebStorm Mac版
好用的JavaScript開發工具

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境

記事本++7.3.1
好用且免費的程式碼編輯器