為什麼使用 eval 是一種有害的做法
由於其固有的缺點,在編程中使用 eval 通常不被鼓勵。儘管它被認為很方便,但還有更合適和更安全的替代方案,特別是在動態定義物件的屬性時。
反對使用eval 的原因:
- 優越的替代方案存在: 在動態定義屬性的情況下,setattr 提供了優越的替代方案存在: 在動態定義屬性的情況下,setattr 提供了更安全的推薦方案解決方案。
- 安全漏洞: Eval 可以在程式中執行任意程式碼,構成重大安全風險。
- 調試挑戰: 調試涉及 eval 的程式碼是複雜的並且容易出錯。
- 效率低: 與本機程式碼執行相比,Eval 相對較慢。
無需 Eval 即可解決根本問題:
動態設定屬性的根本問題可以在不訴諸 eval 的情況下解決。考慮以下使用setattr 修改後的Song 類別:class Song: attsToStore = ('Name', 'Artist', 'Album', 'Genre', 'Location') def __init__(self): for att in self.attsToStore: setattr(self, att.lower(), None) # Initialize attributes with None def setDetail(self, key, val): if key in self.attsToStore: setattr(self, key.lower(), val) # Set attribute dynamically
結論:
雖然eval 可能提供明顯的易用性,但其相關的風險和限制使其成為不可取的大多數場景都需要練習。 Setattr 或類似的機制為動態定義物件屬性提供了更安全、更有效率的替代方案。以上是為什麼在程式設計中使用「eval()」被認為是一種有害的做法?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

ArraySareAryallyMoremory-Moremory-forigationDataDatueTotheIrfixed-SizenatureAntatureAntatureAndirectMemoryAccess.1)arraysStorelelementsInAcontiguxufulock,ReducingOveringOverheadHeadefromenterSormetormetAdata.2)列表,通常

ToconvertaPythonlisttoanarray,usethearraymodule:1)Importthearraymodule,2)Createalist,3)Usearray(typecode,list)toconvertit,specifyingthetypecodelike'i'forintegers.Thisconversionoptimizesmemoryusageforhomogeneousdata,enhancingperformanceinnumericalcomp

Python列表可以存儲不同類型的數據。示例列表包含整數、字符串、浮點數、布爾值、嵌套列表和字典。列表的靈活性在數據處理和原型設計中很有價值,但需謹慎使用以確保代碼的可讀性和可維護性。

Pythondoesnothavebuilt-inarrays;usethearraymoduleformemory-efficienthomogeneousdatastorage,whilelistsareversatileformixeddatatypes.Arraysareefficientforlargedatasetsofthesametype,whereaslistsofferflexibilityandareeasiertouseformixedorsmallerdatasets.

theSostCommonlyusedModuleForCreatingArraysInpyThonisnumpy.1)NumpyProvidEseffitedToolsForarrayOperations,Idealfornumericaldata.2)arraysCanbeCreatedDusingsnp.Array()for1dand2Structures.3)

toAppendElementStoApythonList,usetheappend()方法forsingleements,Extend()formultiplelements,andinsert()forspecificpositions.1)useeAppend()foraddingoneOnelementAttheend.2)useextendTheEnd.2)useextendexendExendEnd(

TocreateaPythonlist,usesquarebrackets[]andseparateitemswithcommas.1)Listsaredynamicandcanholdmixeddatatypes.2)Useappend(),remove(),andslicingformanipulation.3)Listcomprehensionsareefficientforcreatinglists.4)Becautiouswithlistreferences;usecopy()orsl

金融、科研、医疗和AI等领域中,高效存储和处理数值数据至关重要。1)在金融中,使用内存映射文件和NumPy库可显著提升数据处理速度。2)科研领域,HDF5文件优化数据存储和检索。3)医疗中,数据库优化技术如索引和分区提高数据查询性能。4)AI中,数据分片和分布式训练加速模型训练。通过选择适当的工具和技术,并权衡存储与处理速度之间的trade-off,可以显著提升系统性能和可扩展性。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

Atom編輯器mac版下載
最受歡迎的的開源編輯器

VSCode Windows 64位元 下載
微軟推出的免費、功能強大的一款IDE編輯器

PhpStorm Mac 版本
最新(2018.2.1 )專業的PHP整合開發工具

MantisBT
Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

WebStorm Mac版
好用的JavaScript開發工具