模算術和NTT(有限域DFT)最佳化
原始問題:
原始問題:I>想要使用NTT 進行快速平方(請參閱快速bignum平方計算),但結果是即使對於非常大的數字也很慢..超過 12000 位。
有辦法加快我的模組化算術嗎?
//--------------------------------------------------------------------------- class fourier_NTT // Number theoretic transform { public: DWORD r,L,p,N; DWORD W,iW,rN; fourier_NTT(){ r=0; L=0; p=0; W=0; iW=0; rN=0; } // main interface void NTT(DWORD *dst,DWORD *src,DWORD n=0); // DWORD dst[n] = fast NTT(DWORD src[n]) void iNTT(DWORD *dst,DWORD *src,DWORD n=0); // DWORD dst[n] = fast INTT(DWORD src[n]) // Helper functions bool init(DWORD n); // init r,L,p,W,iW,rN void NTT_fast(DWORD *dst,DWORD *src,DWORD n,DWORD w); // DWORD dst[n] = fast NTT(DWORD src[n]) // Only for testing void NTT_slow(DWORD *dst,DWORD *src,DWORD n,DWORD w); // DWORD dst[n] = slow NTT(DWORD src[n]) void iNTT_slow(DWORD *dst,DWORD *src,DWORD n,DWORD w); // DWORD dst[n] = slow INTT(DWORD src[n]) // DWORD arithmetics DWORD shl(DWORD a); DWORD shr(DWORD a); // Modular arithmetics DWORD mod(DWORD a); DWORD modadd(DWORD a,DWORD b); DWORD modsub(DWORD a,DWORD b); DWORD modmul(DWORD a,DWORD b); DWORD modpow(DWORD a,DWORD b); }; //--------------------------------------------------------------------------- void fourier_NTT:: NTT(DWORD *dst,DWORD *src,DWORD n) { if (n>0) init(n); NTT_fast(dst,src,N,W); // NTT_slow(dst,src,N,W); } //--------------------------------------------------------------------------- void fourier_NTT::INTT(DWORD *dst,DWORD *src,DWORD n) { if (n>0) init(n); NTT_fast(dst,src,N,iW); for (DWORD i=0;i<n dst intt_slow bool fourier_ntt::init n p else ntt overflow can ocur r="2;" if>0x10000000)) { r=0; L=0; p=0; W=0; iW=0; rN=0; N=0; return false; } L=0x30000000/n; // 32:30 bit best for unsigned 32 bit // r=2; p=0x78000001; if ((n0x04000000)) { r=0; L=0; p=0; W=0; iW=0; rN=0; N=0; return false; } L=0x3c000000/n; // 31:27 bit best for signed 32 bit // r=2; p=0x00010001; if ((n0x00000020)) { r=0; L=0; p=0; W=0; iW=0; rN=0; N=0; return false; } L=0x00000020/n; // 17:16 bit best for 16 bit // r=2; p=0x0a000001; if ((n0x01000000)) { r=0; L=0; p=0; W=0; iW=0; rN=0; N=0; return false; } L=0x01000000/n; // 28:25 bit N=n; // size of vectors [DWORDs] W=modpow(r, L); // Wn for NTT iW=modpow(r,p-1-L); // Wn for INTT rN=modpow(n,p-2 ); // scale for INTT return true; } //--------------------------------------------------------------------------- void fourier_NTT:: NTT_fast(DWORD *dst,DWORD *src,DWORD n,DWORD w) { if (n>1,w2=modmul(w,w); // reorder even,odd for (i=0,j=0;i<n2 dst for j="1;i<n" recursion ntt_fast even odd restore results a0="src[i];" a1="modmul(src[j],w2);" void fourier_ntt:: ntt_slow n w dword i a="0;" wi="modmul(wi,wj);" wj="modmul(wj,w);" fourier_ntt::intt_slow fourier_ntt::shl return fourier_ntt::shr>>1)&0x7FFFFFFF; } //--------------------------------------------------------------------------- DWORD fourier_NTT::mod(DWORD a) { DWORD bb;</n2></n>代碼:
以上是如何最佳化數論變換 (NTT) 和模運算以加快大數平方?的詳細內容。更多資訊請關注PHP中文網其他相關文章!