搜尋
首頁後端開發Python教學如何融化 Pandas DataFrame 以及何時使用此技術?

How to Melt a Pandas DataFrame and When to Use This Technique?

融化 Pandas DataFrames

什麼是 Melt?

融化pandas DataFrame 涉及從寬格式重構它,其中每一列代表一個變量,長格式,其中每行代表一個觀察值,每列代表一個特徵值

如何熔化DataFrame

要融化DataFrame,請使用pd.melt()函數,並指定以下參數:

  • id_vars:列保留為唯一識別碼(通常是主鍵或索引)。
  • value_vars:要熔化的列(轉換為行)。如果未指定,則融化不在 id_vars 中的所有列。
  • var_name:將包含原始欄位名稱的欄位的名稱。
  • value_name:將包含原始欄位的欄位的名稱值。

例如,融化以下內容DataFrame:

import pandas as pd

df = pd.DataFrame({'Name': ['Bob', 'John', 'Foo', 'Bar', 'Alex', 'Tom'],
                   'Math': ['A+', 'B', 'A', 'F', 'D', 'C'],
                   'English': ['C', 'B', 'B', 'A+', 'F', 'A']})

我們可以使用:

df_melted = pd.melt(df, id_vars=['Name'], value_vars=['Math', 'English'])

這將輸出熔化的DataFrame:

   Name  variable  value
0   Bob    Math     A+
1   John    Math      B
2   Foo    Math      A
3   Bar    Math      F
4   Alex    Math      D
5   Tom    Math      C
6   Bob  English      C
7   John  English      B
8   Foo   English      B
9   Bar  English     A+
10  Alex  English      F
11  Tom   English      A

何時使用Melt

當您需要執行以下操作時,熔化非常有用:

  • 變換寬幅將資料轉換為適合繪圖或視覺化的格式。
  • 為需要特定資料格式的機器學習模型準備資料。
  • 以唯一識別碼將觀察結果分組,並對融合的資料執行聚合或轉換。

範例場景

問題1:將下面的 DataFrame 轉換為融合格式,包含名稱、年齡、主題和成績列。

df = pd.DataFrame({'Name': ['Bob', 'John', 'Foo', 'Bar', 'Alex', 'Tom'],
                   'Math': ['A+', 'B', 'A', 'F', 'D', 'C'],
                   'English': ['C', 'B', 'B', 'A+', 'F', 'A']})
df_melted = pd.melt(df, id_vars=['Name', 'Age'], var_name='Subject', value_name='Grade')

print(df_melted)

輸出:

   Name  Age Subject Grade
0   Bob   13  English      C
1  John   16  English      B
2   Foo   16  English      B
3   Bar   15  English     A+
4  Alex   17  English      F
5   Tom   12  English      A
6   Bob   13     Math     A+
7  John   16     Math      B
8   Foo   16     Math      A
9   Bar   15     Math      F
10 Alex   17     Math      D
11  Tom   12     Math      C

問題 2:過濾問題 1 中融化的 DataFrame以僅包含數學

df_melted_math = pd.melt(df, id_vars=['Name', 'Age'], value_vars=['Math'], var_name='Subject', value_name='Grade')

print(df_melted_math)

輸出:

   Name  Age Subject Grade
0   Bob   13    Math     A+
1  John   16    Math      B
2   Foo   16    Math      A
3   Bar   15    Math      F
4  Alex   17    Math      D
5   Tom   12    Math      C

問題3:按年級對融化的DataFrame 進行分組,併計算每個DataFrame 的唯一名稱和主題成績。

df_melted_grouped = df_melted.groupby(['Grade']).agg({'Name': ', '.join, 'Subject': ', '.join}).reset_index()

print(df_melted_grouped)

輸出:

  Grade             Name                Subjects
0     A       Foo, Tom           Math, English
1    A+         Bob, Bar           Math, English
2     B  John, John, Foo  Math, English, English
3     C         Bob, Tom           English, Math
4     D             Alex                    Math
5     F        Bar, Alex           Math, English

問題 4:將問題 1 中融化的 DataFrame 解回其原始狀態格式。

df_unmelted = df_melted.pivot_table(index=['Name', 'Age'], columns='Subject', values='Grade', aggfunc='first').reset_index()

print(df_unmelted)

輸出:

   Name  Age English Math
0   Alex   17       F    D
1   Bar   15      A+    F
2   Bob   13       C   A+
3   Foo   16       B    A
4  John   16       B    B
5   Tom   12       A    C

問題 5:依名稱將問題 1 中融合的 DataFrame 分組,並依逗號。

df_melted_by_name = df_melted.groupby('Name').agg({'Subject': ', '.join, 'Grade': ', '.join}).reset_index()

print(df_melted_by_name)

輸出:

   Name        Subject Grades
0  Alex  Math, English   D, F
1   Bar  Math, English  F, A+
2   Bob  Math, English  A+, C
3   Foo  Math, English   A, B
4  John  Math, English   B, B
5   Tom  Math, English   C, A

問題6:將整個DataFrame 合併為一列值,另一列包含原始列名稱.

df_melted_full = df.melt(ignore_index=False)

print(df_melted_full)

輸出:

   Name  Age  variable  value
0   Bob   13    Math     A+
1  John   16    Math      B
2   Foo   16    Math      A
3   Bar   15    Math      F
4  Alex   17    Math      D
5   Tom   12    Math      C
6   Bob   13  English      C
7  John   16  English      B
8   Foo   16  English      B
9   Bar   15  English     A+
10 Alex   17  English      F
11  Tom   12  English      A

以上是如何融化 Pandas DataFrame 以及何時使用此技術?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
說明列表和數組之間元素操作的性能差異。說明列表和數組之間元素操作的性能差異。May 06, 2025 am 12:15 AM

ArraySareBetterForlement-WiseOperationsDuetofasterAccessCessCessCessCessCessCessCessAndOptimizedImplementations.1)ArrayshaveContiguucuulmemoryfordirectAccesscess.2)列出sareflexible butslible butslowerduetynemicizing.3)

如何有效地對整個Numpy陣列進行數學操作?如何有效地對整個Numpy陣列進行數學操作?May 06, 2025 am 12:15 AM

在NumPy中进行整个数组的数学运算可以通过向量化操作高效实现。1)使用简单运算符如加法(arr 2)可对数组进行运算。2)NumPy使用C语言底层库,提升了运算速度。3)可以进行乘法、除法、指数等复杂运算。4)需注意广播操作,确保数组形状兼容。5)使用NumPy函数如np.sum()能显著提高性能。

您如何將元素插入python數組中?您如何將元素插入python數組中?May 06, 2025 am 12:14 AM

在Python中,向列表插入元素有兩種主要方法:1)使用insert(index,value)方法,可以在指定索引處插入元素,但在大列表開頭插入效率低;2)使用append(value)方法,在列表末尾添加元素,效率高。對於大列表,建議使用append()或考慮使用deque或NumPy數組來優化性能。

如何使Unix和Windows上的Python腳本可執行?如何使Unix和Windows上的Python腳本可執行?May 06, 2025 am 12:13 AM

tomakeapythonscriptexecutableonbothunixandwindows:1)addashebangline(#!/usr/usr/bin/envpython3)Andusechmod xtomakeitexecutableonix.2)onWindows,確保pytythonisinstalledandassionstalledandassociatedwith.pyfiles,oruseabatchfile(runun.batchfile(runitter)(rugitty.batt)

試圖運行腳本時,應該檢查一下是否會發現'找不到命令”錯誤?試圖運行腳本時,應該檢查一下是否會發現'找不到命令”錯誤?May 06, 2025 am 12:03 AM

當遇到“commandnotfound”錯誤時,應檢查以下幾點:1.確認腳本存在且路徑正確;2.檢查文件權限,必要時使用chmod添加執行權限;3.確保腳本解釋器已安裝並在PATH中;4.驗證腳本開頭的shebang行是否正確。這樣做可以有效解決腳本運行問題,確保編碼過程順利進行。

為什麼數組通常比存儲數值數據列表更高?為什麼數組通常比存儲數值數據列表更高?May 05, 2025 am 12:15 AM

ArraySareAryallyMoremory-Moremory-forigationDataDatueTotheIrfixed-SizenatureAntatureAntatureAndirectMemoryAccess.1)arraysStorelelementsInAcontiguxufulock,ReducingOveringOverheadHeadefromenterSormetormetAdata.2)列表,通常

如何將Python列表轉換為Python陣列?如何將Python列表轉換為Python陣列?May 05, 2025 am 12:10 AM

ToconvertaPythonlisttoanarray,usethearraymodule:1)Importthearraymodule,2)Createalist,3)Usearray(typecode,list)toconvertit,specifyingthetypecodelike'i'forintegers.Thisconversionoptimizesmemoryusageforhomogeneousdata,enhancingperformanceinnumericalcomp

您可以將不同的數據類型存儲在同一Python列表中嗎?舉一個例子。您可以將不同的數據類型存儲在同一Python列表中嗎?舉一個例子。May 05, 2025 am 12:10 AM

Python列表可以存儲不同類型的數據。示例列表包含整數、字符串、浮點數、布爾值、嵌套列表和字典。列表的靈活性在數據處理和原型設計中很有價值,但需謹慎使用以確保代碼的可讀性和可維護性。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

WebStorm Mac版

WebStorm Mac版

好用的JavaScript開發工具

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

EditPlus 中文破解版

EditPlus 中文破解版

體積小,語法高亮,不支援程式碼提示功能