為什麼 moving_avg_concurrent2 的效能無法隨著同時執行的增加而提升?
moving_avg_concurrent2 將清單拆分為較小的片段,並使用單一 goroutine 處理每個片段。出於某種原因(目前尚不清楚原因),由於某些原因,使用一個 goroutine 的函數比 moving_avg_serial4 更快,但使用多個 goroutine 的效能開始比 moving_avg_serial4 差。
為什麼 moving_avg_concurrent3 比 moving_avg_serial4 慢很多?
使用一個 goroutine 時,moving_avg_concurrent3 的效能比 moving_avg_serial4 差。雖然增加 num_goroutines 可以提高效能,但仍然比 moving_avg_serial4 差。
即使 goroutine 是輕量級的,它們也並非完全免費,是否可能產生的開銷如此之大,以至於速度甚至低於 moving_avg_serial4?
是的,雖然 goroutine 比較輕量級,但它們並不是免費的。當使用多個 goroutine 時,啟動、管理和調度這些 goroutine 的開銷可能會超過提升的並行度所獲得的好處。
程式碼
函數:
// 返回包含输入移动平均值的列表(已提供,即未优化) func moving_avg_serial(input []float64, window_size int) []float64 { first_time := true var output = make([]float64, len(input)) if len(input) > 0 { var buffer = make([]float64, window_size) // 初始化缓冲区为 NaN for i := range buffer { buffer[i] = math.NaN() } for i, val := range input { old_val := buffer[int((math.Mod(float64(i), float64(window_size))))] buffer[int((math.Mod(float64(i), float64(window_size))))] = val if !NaN_in_slice(buffer) && first_time { sum := 0.0 for _, entry := range buffer { sum += entry } output[i] = sum / float64(window_size) first_time = false } else if i > 0 && !math.IsNaN(output[i-1]) && !NaN_in_slice(buffer) { output[i] = output[i-1] + (val-old_val)/float64(window_size) // 无循环的解决方案 } else { output[i] = math.NaN() } } } else { // 空输入 fmt.Println("moving_avg is panicking!") panic(fmt.Sprintf("%v", input)) } return output } // 返回包含输入移动平均值的列表 // 重新排列控制结构以利用短路求值 func moving_avg_serial4(input []float64, window_size int) []float64 { first_time := true var output = make([]float64, len(input)) if len(input) > 0 { var buffer = make([]float64, window_size) // 初始化缓冲区为 NaN for i := range buffer { buffer[i] = math.NaN() } for i := range input { // fmt.Printf("in mvg_avg4: i=%v\n", i) old_val := buffer[int((math.Mod(float64(i), float64(window_size))))] buffer[int((math.Mod(float64(i), float64(window_size))))] = input[i] if first_time && !NaN_in_slice(buffer) { sum := 0.0 for j := range buffer { sum += buffer[j] } output[i] = sum / float64(window_size) first_time = false } else if i > 0 && !math.IsNaN(output[i-1]) /* && !NaN_in_slice(buffer)*/ { output[i] = output[i-1] + (input[i]-old_val)/float64(window_size) // 无循环的解决方案 } else { output[i] = math.NaN() } } } else { // 空输入 fmt.Println("moving_avg is panicking!") panic(fmt.Sprintf("%v", input)) } return output } // 返回包含输入移动平均值的列表 // 将列表拆分为较小的片段以使用 goroutine,但不使用串行版本,即我们仅在开头具有 NaN,因此希望减少一些开销 // 仍然不能扩展(随着大小和 num_goroutines 的增加,性能下降) func moving_avg_concurrent2(input []float64, window_size, num_goroutines int) []float64 { var output = make([]float64, window_size-1, len(input)) for i := 0; i 0 { num_items := len(input) - (window_size - 1) var barrier_wg sync.WaitGroup n := num_items / num_goroutines go_avg := make([][]float64, num_goroutines) for i := 0; i 0 { num_windows := len(input) - (window_size - 1) var output = make([]float64, len(input)) for i := 0; i
以上是儘管將清單分割成由各個 goroutine 處理的較小的區塊,為什麼「moving_avg_concurrent2」的效能沒有隨著並發性的增加而提高?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

Golang和Python的主要區別在於並發模型、類型系統、性能和執行速度。 1.Golang使用CSP模型,適用於高並發任務;Python依賴多線程和GIL,適合I/O密集型任務。 2.Golang是靜態類型,Python是動態類型。 3.Golang編譯型語言執行速度快,Python解釋型語言開發速度快。

Golang通常比C 慢,但Golang在並發編程和開發效率上更具優勢:1)Golang的垃圾回收和並發模型使其在高並發場景下表現出色;2)C 通過手動內存管理和硬件優化獲得更高性能,但開發複雜度較高。

Golang在雲計算和DevOps中的應用廣泛,其優勢在於簡單性、高效性和並發編程能力。 1)在雲計算中,Golang通過goroutine和channel機制高效處理並發請求。 2)在DevOps中,Golang的快速編譯和跨平台特性使其成為自動化工具的首選。

Golang和C 在執行效率上的表現各有優勢。 1)Golang通過goroutine和垃圾回收提高效率,但可能引入暫停時間。 2)C 通過手動內存管理和優化實現高性能,但開發者需處理內存洩漏等問題。選擇時需考慮項目需求和團隊技術棧。

Golang更適合高並發任務,而Python在靈活性上更有優勢。 1.Golang通過goroutine和channel高效處理並發。 2.Python依賴threading和asyncio,受GIL影響,但提供多種並發方式。選擇應基於具體需求。

Golang和C 在性能上的差異主要體現在內存管理、編譯優化和運行時效率等方面。 1)Golang的垃圾回收機制方便但可能影響性能,2)C 的手動內存管理和編譯器優化在遞歸計算中表現更為高效。

selectgolangforhighpperformanceandcorrency,ifealforBackendServicesSandNetwork程序; selectpypypythonforrapiddevelopment,dataScience和machinelearningDuetoitsverserverserverserversator versator anderticality andextility andextentensivelibraries。

Golang和Python各有优势:Golang适合高性能和并发编程,Python适用于数据科学和Web开发。Golang以其并发模型和高效性能著称,Python则以简洁语法和丰富库生态系统著称。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

Dreamweaver CS6
視覺化網頁開發工具

WebStorm Mac版
好用的JavaScript開發工具

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境

記事本++7.3.1
好用且免費的程式碼編輯器