請我喝杯咖啡☕
*我的貼文解釋了 Oxford-IIIT Pet。
OxfordIIITPet()可以使用Oxford-IIIT Pet資料集,如下所示:
*備忘錄:
- 第一個參數是 root(必要類型:str 或 pathlib.Path)。 *絕對或相對路徑都是可能的。
- 第二個參數是 split(可選-預設:"train"-類型:str)。 *可以設定「trainval」(3,680張圖片)或「test」(3,669張圖片)。
- 第三個參數是 target_types(可選-預設:「attr」-類型:str 或 str 清單):
*備註:
- 可以為其設定「category」、「binary-category」和/或「segmentation」: *備註:
- 「category」是 37 個類別的標籤。
- 「binary-category」用於cat(0)或dog(1)的標籤。
- “segmentation”用於分割三圖影像。
- 也可以為其設定空元組或清單。
- 可以設定多個相同的值。
- 如果值的順序不同,則其元素的順序也會不同。
- 第四個參數是transform(Optional-Default:None-Type:callable)。
- 第 5 個參數是 target_transform(Optional-Default:None-Type:callable)。
- 第 6 個參數是 download(可選-預設:False-類型:bool):
*備註:
- 如果為 True,則從網路下載資料集並解壓縮(解壓縮)到根目錄。
- 如果為 True 並且資料集已下載,則將其提取。
- 如果為 True 並且資料集已下載並提取,則不會發生任何事情。
- 如果資料集已經下載並提取,則應該為 False,因為它速度更快。
- 您可以從此處手動下載並提取資料集(images.tar.gz 和annotations.tar.gz)到 data/oxford-iiit-pet/。
- 關於訓練影像索引的類別(類)標籤,阿比西尼亞(0)為0~49,美國鬥牛犬(1)為50~99, 美國比特鬥牛犬(2)是100~149, 巴吉度獵犬(3)為150~199,小獵犬(4)為200~249,孟加拉虎(5)為250~299, 伯曼貓(6)為300~349, 孟買(7)為350~398、拳師犬(8)為399~448、英國短毛貓(9)為449~498等
- 關於測試影像索引的類別(類別)標籤,阿比西尼亞(0)為0~97,美國鬥牛犬(1)為98~197, 美國比特鬥牛犬(2)是198~297, 巴吉度獵犬(3)為298~397,小獵犬(4)為398~497,孟加拉虎(5)為498~597, 伯曼貓(6)為598~697, 孟買(7)為698~785,拳師犬(8)為786~884,英國短毛貓(9)為885~984等。
from torchvision.datasets import OxfordIIITPet trainval_cate_data = OxfordIIITPet( root="data" ) trainval_cate_data = OxfordIIITPet( root="data", split="trainval", target_types="category", transform=None, target_transform=None, download=False ) trainval_bincate_data = OxfordIIITPet( root="data", split="trainval", target_types="binary-category" ) test_seg_data = OxfordIIITPet( root="data", split="test", target_types="segmentation" ) test_empty_data = OxfordIIITPet( root="data", split="test", target_types=[] ) test_all_data = OxfordIIITPet( root="data", split="test", target_types=["category", "binary-category", "segmentation"] ) len(trainval_cate_data), len(trainval_bincate_data) # (3680, 3680) len(test_seg_data), len(test_empty_data), len(test_all_data) # (3669, 3669, 3669) trainval_cate_data # Dataset OxfordIIITPet # Number of datapoints: 3680 # Root location: data trainval_cate_data.root # 'data' trainval_cate_data._split # 'trainval' trainval_cate_data._target_types # ['category'] print(trainval_cate_data.transform) # None print(trainval_cate_data.target_transform) # None trainval_cate_data._download # <bound method oxfordiiitpet._download of dataset oxfordiiitpet number datapoints: root location: data> len(trainval_cate_data.classes), trainval_cate_data.classes # (37, # ['Abyssinian', 'American Bulldog', 'American Pit Bull Terrier', # 'Basset Hound', 'Beagle', 'Bengal', 'Birman', 'Bombay', 'Boxer', # 'British Shorthair', ..., 'Wheaten Terrier', 'Yorkshire Terrier']) trainval_cate_data[0] # (<pil.image.image image mode="RGB" size="394x500">, 0) trainval_cate_data[1] # (<pil.image.image image mode="RGB" size="450x313">, 0) trainval_cate_data[2] # (<pil.image.image image mode="RGB" size="500x465">, 0) trainval_bincate_data[0] # (<pil.image.image image mode="RGB" size="394x500">, 0) trainval_bincate_data[1] # (<pil.image.image image mode="RGB" size="450x313">, 0) trainval_bincate_data[2] # (<pil.image.image image mode="RGB" size="500x465">, 0) test_seg_data[0] # (<pil.image.image image mode="RGB" size="300x225">, # <pil.pngimageplugin.pngimagefile image mode="L" size="300x225">) test_seg_data[1] # (<pil.image.image image mode="RGB" size="300x225">, # <pil.pngimageplugin.pngimagefile image mode="L" size="300x225">) test_seg_data[2] # (<pil.image.image image mode="RGB" size="229x300">, # <pil.pngimageplugin.pngimagefile image mode="L" size="229x300">) test_empty_data[0] # (<pil.image.image image mode="RGB" size="300x225">, None) test_empty_data[1] # (<pil.image.image image mode="RGB" size="300x225">, None) test_empty_data[2] # (<pil.image.image image mode="RGB" size="229x300">, None) test_all_data[0] # (<pil.image.image image mode="RGB" size="300x225">, # (0, 0, <pil.pngimageplugin.pngimagefile image mode="L" size="300x225">)) test_all_data[1] # (<pil.image.image image mode="RGB" size="300x225">, # (0, 0, <pil.pngimageplugin.pngimagefile image mode="L" size="300x225">)) test_all_data[2] # (<pil.image.image image mode="RGB" size="229x300">, # (0, 0, <pil.pngimageplugin.pngimagefile image mode="L" size="229x300">)) import matplotlib.pyplot as plt def show_images(data, ims, main_title=None): if len(data._target_types) == 0: plt.figure(figsize=(12, 6)) plt.suptitle(t=main_title, y=1.0, fontsize=14) for i, j in enumerate(ims, start=1): plt.subplot(2, 5, i) im, _ = data[j] plt.imshow(X=im) elif len(data._target_types) == 1: if data._target_types[0] == "category": plt.figure(figsize=(12, 6)) plt.suptitle(t=main_title, y=1.0, fontsize=14) for i, j in enumerate(ims, start=1): plt.subplot(2, 5, i) im, cate = data[j] plt.title(label=cate) plt.imshow(X=im) elif data._target_types[0] == "binary-category": plt.figure(figsize=(12, 6)) plt.suptitle(t=main_title, y=1.0, fontsize=14) for i, j in enumerate(ims, start=1): plt.subplot(2, 5, i) im, bincate = data[j] plt.title(label=bincate) plt.imshow(X=im) elif data._target_types[0] == "segmentation": plt.figure(figsize=(12, 12)) plt.suptitle(t=main_title, y=1.0, fontsize=14) for i, j in enumerate(ims, start=1): im, seg = data[j] if 1 <p><img src="/static/imghwm/default1.png" data-src="https://img.php.cn/upload/article/000/000/000/173486413998858.jpg?x-oss-process=image/resize,p_40" class="lazy" alt="OxfordIIITPet in PyTorch"></p><p><img src="/static/imghwm/default1.png" data-src="https://img.php.cn/upload/article/000/000/000/173486414377932.jpg?x-oss-process=image/resize,p_40" class="lazy" alt="OxfordIIITPet in PyTorch"></p> <p><img src="/static/imghwm/default1.png" data-src="https://img.php.cn/upload/article/000/000/000/173486414647181.jpg?x-oss-process=image/resize,p_40" class="lazy" alt="OxfordIIITPet in PyTorch"></p> <p><img src="/static/imghwm/default1.png" data-src="https://img.php.cn/upload/article/000/000/000/173486415046391.jpg?x-oss-process=image/resize,p_40" class="lazy" alt="OxfordIIITPet in PyTorch"></p> <p><img src="/static/imghwm/default1.png" data-src="https://img.php.cn/upload/article/000/000/000/173486415371337.jpg?x-oss-process=image/resize,p_40" class="lazy" alt="OxfordIIITPet in PyTorch"></p> </pil.pngimageplugin.pngimagefile></pil.image.image></pil.pngimageplugin.pngimagefile></pil.image.image></pil.pngimageplugin.pngimagefile></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.pngimageplugin.pngimagefile></pil.image.image></pil.pngimageplugin.pngimagefile></pil.image.image></pil.pngimageplugin.pngimagefile></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></bound>
以上是PyTorch 中的 OxfordIIITPet的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本文討論了版本3.10中介紹的Python的新“匹配”語句,該語句與其他語言相同。它增強了代碼的可讀性,並為傳統的if-elif-el提供了性能優勢

Python中的功能註釋將元數據添加到函數中,以進行類型檢查,文檔和IDE支持。它們增強了代碼的可讀性,維護,並且在API開發,數據科學和圖書館創建中至關重要。

本文討論了Python中的單位測試,其好處以及如何有效編寫它們。它突出顯示了諸如UNITSEST和PYTEST之類的工具進行測試。

文章討論了Python的\ _ \ _ Init \ _ \ _()方法和Self在初始化對象屬性中的作用。還涵蓋了其他類方法和繼承對\ _ \ _ Init \ _ \ _()的影響。

本文討論了python中@classmethod,@staticmethod和實例方法之間的差異,詳細介紹了它們的屬性,用例和好處。它說明瞭如何根據所需功能選擇正確的方法類型和DA

Inpython,YouAppendElementStoAlistusingTheAppend()方法。 1)useappend()forsingleelements:my_list.append(4).2)useextend()orextend()或= formultiplelements:my_list.extend.extend(emote_list)ormy_list = [4,5,6] .3)useInsert()forspefificpositions:my_list.insert(1,5).beaware


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

SublimeText3 Linux新版
SublimeText3 Linux最新版

MantisBT
Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

Safe Exam Browser
Safe Exam Browser是一個安全的瀏覽器環境,安全地進行線上考試。該軟體將任何電腦變成一個安全的工作站。它控制對任何實用工具的訪問,並防止學生使用未經授權的資源。

SAP NetWeaver Server Adapter for Eclipse
將Eclipse與SAP NetWeaver應用伺服器整合。

禪工作室 13.0.1
強大的PHP整合開發環境