收集重複計算的結果
問題陳述:
我需要收集重複執行的計算的結果對於x 的多個值,然後使用它們。
一般方法
使用明確循環:
- 在循環之前建立一個列表或字典,並在計算結果時附加或關聯結果:
ys = [] for x in [1, 3, 5]: ys.append(x + 1) ys = {} x = 19 while x != 1: y = next_collatz(x) ys[x] = y x = y
使用理解式或生成器表達式:
-
列表理解:
xs = [1, 3, 5] ys = [x + 1 for x in xs]
-
字典理解:
ys = {x: x + 1 for x in xs}
使用map:
-
將函數對應到序列,並將結果轉換為清單:
def calc_y(an_x): return an_x + 1 xs = [1, 3, 5] ys = list(map(calc_y, xs))
具體範例:
收集固定結果序列:
def make_list_with_inline_code_and_for(): ys = [] for x in [1, 3, 5]: ys.append(x + 1) return ys def make_dict_with_function_and_while(): x = 19 ys = {} while x != 1: y = next_collatz(x) ys[x] = y # associate each key with the next number in the Collatz sequence. x = y # continue calculating the sequence. return ys
管理循環期間更改的資料:
使用生成器表達式:
def collatz_from_19(): def generate_collatz(): nonlocal x yield x while x != 1: x = next_collatz(x) yield x x = 19 return generate_collatz()
使用地圖:
def collatz_from_19_with_map(): def next_collatz2(value): nonlocal x x = value return next_collatz(x) x = 19 return map(next_collatz2, range(1))
以上是如何有效率地收集Python重複計算的結果?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

ArraySareAryallyMoremory-Moremory-forigationDataDatueTotheIrfixed-SizenatureAntatureAntatureAndirectMemoryAccess.1)arraysStorelelementsInAcontiguxufulock,ReducingOveringOverheadHeadefromenterSormetormetAdata.2)列表,通常

ToconvertaPythonlisttoanarray,usethearraymodule:1)Importthearraymodule,2)Createalist,3)Usearray(typecode,list)toconvertit,specifyingthetypecodelike'i'forintegers.Thisconversionoptimizesmemoryusageforhomogeneousdata,enhancingperformanceinnumericalcomp

Python列表可以存儲不同類型的數據。示例列表包含整數、字符串、浮點數、布爾值、嵌套列表和字典。列表的靈活性在數據處理和原型設計中很有價值,但需謹慎使用以確保代碼的可讀性和可維護性。

Pythondoesnothavebuilt-inarrays;usethearraymoduleformemory-efficienthomogeneousdatastorage,whilelistsareversatileformixeddatatypes.Arraysareefficientforlargedatasetsofthesametype,whereaslistsofferflexibilityandareeasiertouseformixedorsmallerdatasets.

theSostCommonlyusedModuleForCreatingArraysInpyThonisnumpy.1)NumpyProvidEseffitedToolsForarrayOperations,Idealfornumericaldata.2)arraysCanbeCreatedDusingsnp.Array()for1dand2Structures.3)

toAppendElementStoApythonList,usetheappend()方法forsingleements,Extend()formultiplelements,andinsert()forspecificpositions.1)useeAppend()foraddingoneOnelementAttheend.2)useextendTheEnd.2)useextendexendExendEnd(

TocreateaPythonlist,usesquarebrackets[]andseparateitemswithcommas.1)Listsaredynamicandcanholdmixeddatatypes.2)Useappend(),remove(),andslicingformanipulation.3)Listcomprehensionsareefficientforcreatinglists.4)Becautiouswithlistreferences;usecopy()orsl

金融、科研、医疗和AI等领域中,高效存储和处理数值数据至关重要。1)在金融中,使用内存映射文件和NumPy库可显著提升数据处理速度。2)科研领域,HDF5文件优化数据存储和检索。3)医疗中,数据库优化技术如索引和分区提高数据查询性能。4)AI中,数据分片和分布式训练加速模型训练。通过选择适当的工具和技术,并权衡存储与处理速度之间的trade-off,可以显著提升系统性能和可扩展性。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

記事本++7.3.1
好用且免費的程式碼編輯器

Dreamweaver Mac版
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

SublimeText3 英文版
推薦:為Win版本,支援程式碼提示!