身為 Python 開發人員,我了解到最佳化程式碼對於創建高效能應用程式至關重要。在本文中,我將分享我用來增強 Python 程式碼效能的七種強大技術,重點介紹提高執行速度和記憶體效率的實用方法。
生成器和迭代器
優化 Python 程式碼最有效的方法之一是使用生成器和迭代器。這些工具在處理大型數據集時特別有用,因為它們允許我們處理數據,而無需立即將所有內容載入記憶體。
當我需要處理太大而無法輕鬆容納在記憶體中的序列時,我經常使用生成器。這是生成素數的生成器函數的範例:
這個生成器允許我處理無限的素數序列,而無需將它們全部儲存在記憶體中。我可以這樣使用它:
列表推導式與產生器表達式
列表推導式和產生器表達式是傳統循環的簡潔且通常更快的替代方案。它們對於創建新列表或迭代序列特別有用。
這是一個對偶數平方的列表理解的範例:
對於較大的序列,我更喜歡生成器表達式以節省記憶體:
高效能容器資料類型
Python 中的集合模組提供了多種高效能容器資料類型,可顯著提高程式碼效率。
當我需要從清單兩端快速追加和彈出時,我經常使用 deque(雙端隊列):
計數器是另一種用於計算可雜湊物件的有用資料類型:
用於快速尋找的集合和字典
集合和字典在內部使用哈希表,這使得它們的查找和成員資格測試速度非常快。每當我需要檢查集合中是否存在某個項目或需要從清單中刪除重複項時,我都會使用它們。
這是使用集合進行快速成員資格測試的範例:
使用 Numba 進行即時編譯
對於數值計算,Numba 可以透過即時編譯顯著提高速度。以下是使用 Numba 加速計算曼德布羅特集的函數的範例:
此函數比純 Python 等效函數快 100 倍。
C-Speed 的 Cython
當我需要更快的速度時,我會轉向 Cython。 Cython 允許我將 Python 程式碼編譯為 C,從而顯著提高效能。這是 Cython 函數的簡單範例:
這個 Cython 函數可以比純 Python 實現快幾倍。
分析與最佳化
在最佳化之前,確定瓶頸在哪裡至關重要。我使用 cProfile 進行計時,使用 memory_profiler 進行記憶體使用分析。
這是我使用 cProfile 的方法:
記憶體分析:
這些工具幫助我將最佳化工作集中在能產生最大影響的地方。
使用 functools.lru_cache 進行記憶
記憶化是我用來快取昂貴函數呼叫結果的一種技術。 functools.lru_cache 裝飾器讓這變得簡單:
這可以透過避免冗餘計算來顯著加快遞歸函數的速度。
使用 itertools 進行高效率迭代
itertools 模組提供了一系列快速、記憶體高效的工具來建立迭代器。我經常將它們用於組合序列或生成排列等任務。
這是使用 itertools.combinations 的範例:
編寫高效能 Python 程式碼的最佳實務
多年來,我開發了幾種編寫高效 Python 程式碼的最佳實踐:
最佳化循環:我嘗試將盡可能多的程式碼移到循環之外。對於嵌套循環,我確保內部循環盡可能快。
減少函數呼叫開銷:對於經常呼叫的非常小的函數,我考慮使用內聯函數或 lambda 表達式。
使用適當的資料結構:我為任務選擇正確的資料結構。例如,我使用集合進行快速成員資格測試,使用字典進行快速鍵值查找。
最小化物件建立:建立新物件可能會很昂貴,尤其是在循環內。我嘗試盡可能重複使用物件。
使用內建函數和函式庫:Python 的內建函數和標準函式庫通常經過最佳化並且比自訂實作更快。
避免全域變數:存取全域變數比存取局部變數慢。
使用 'in' 進行成員資格測試:對於列表、元組和集合,使用 'in' 比循環更快。
這是一個包含其中幾個實踐的範例:
此函數使用 defaultdict 來避免明確檢查鍵是否存在,在單一循環中處理數據,並使用字典理解進行最終計算。
總之,最佳化 Python 程式碼是一項需要實作和經驗的技能。透過應用這些技術並始終衡量最佳化的影響,您可以編寫出不僅優雅而且高效能的 Python 程式碼。請記住,過早的優化是萬惡之源,因此請務必先分析您的程式碼,以確定真正需要優化的地方。
我們的創作
一定要看看我們的創作:
投資者中心 | 投資者中央西班牙語 | 投資者中德意志 | 智能生活 | 時代與迴音 | 令人費解的謎團 | 印度教 | 菁英發展 | JS學校
我們在媒體上
科技無尾熊洞察 | 時代與迴響世界 | 投資人中央媒體 | 令人費解的謎團 | | 令人費解的謎團 | |
令人費解的謎團 | | 令人費解的謎團 | >科學與時代媒介 | 現代印度教以上是強大的 Python 效能優化技術,可實現更快的程式碼的詳細內容。更多資訊請關注PHP中文網其他相關文章!

Tomergelistsinpython,YouCanusethe操作員,estextMethod,ListComprehension,Oritertools

在Python3中,可以通過多種方法連接兩個列表:1)使用 運算符,適用於小列表,但對大列表效率低;2)使用extend方法,適用於大列表,內存效率高,但會修改原列表;3)使用*運算符,適用於合併多個列表,不修改原列表;4)使用itertools.chain,適用於大數據集,內存效率高。

使用join()方法是Python中從列表連接字符串最有效的方法。 1)使用join()方法高效且易讀。 2)循環使用 運算符對大列表效率低。 3)列表推導式與join()結合適用於需要轉換的場景。 4)reduce()方法適用於其他類型歸約,但對字符串連接效率低。完整句子結束。

pythonexecutionistheprocessoftransformingpypythoncodeintoExecutablestructions.1)InternterPreterReadSthecode,ConvertingTingitIntObyTecode,whepythonvirtualmachine(pvm)theglobalinterpreterpreterpreterpreterlock(gil)the thepythonvirtualmachine(pvm)

Python的關鍵特性包括:1.語法簡潔易懂,適合初學者;2.動態類型系統,提高開發速度;3.豐富的標準庫,支持多種任務;4.強大的社區和生態系統,提供廣泛支持;5.解釋性,適合腳本和快速原型開發;6.多範式支持,適用於各種編程風格。

Python是解釋型語言,但也包含編譯過程。 1)Python代碼先編譯成字節碼。 2)字節碼由Python虛擬機解釋執行。 3)這種混合機制使Python既靈活又高效,但執行速度不如完全編譯型語言。

UseeAforloopWheniteratingOveraseQuenceOrforAspecificnumberoftimes; useAwhiLeLoopWhenconTinuingUntilAcIntiment.forloopsareIdealForkNownsences,而WhileLeleLeleLeleLeleLoopSituationSituationsItuationsItuationSuationSituationswithUndEtermentersitations。

pythonloopscanleadtoerrorslikeinfiniteloops,modifyingListsDuringteritation,逐個偏置,零indexingissues,andnestedloopineflinefficiencies


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SecLists
SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

MantisBT
Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境

SublimeText3漢化版
中文版,非常好用