探索NumPy 中的高效數組映射
在本次討論中,我們深入研究在NumPy 數組上映射函數的最有效方法。一種常見的方法是利用列表理解,然後轉換回 NumPy 數組:
import numpy as np x = np.array([1, 2, 3, 4, 5]) squarer = lambda t: t ** 2 squares = np.array([squarer(xi) for xi in x])
但是,由於中間 Python 列表的創建和轉換,這種方法可能會表現出低效率。讓我們探索可能提高性能的替代方法。
利用本機NumPy 函數
如果目標函數已在NumPy 中實現,則最好直接使用它,如下所示演示如下:
x ** 2
由於固有的最佳化,這種方法比其他方法快得多NumPy 的原生函數。
向量化函數
當所需函數不是 NumPy 原生函數時,向量化是一種強大的技術,可以按元素應用函數數組。這可以使用以下方法來完成:
vf = np.vectorize(f) vf(x)
此方法為向量化操作提供了高效的實作。
使用fromiter()
fromiter()函數可用來建立一個迭代器,該迭代器根據提供的函數和陣列產生元素值:
np.fromiter((f(xi) for xi in x), x.dtype)
此方法特別適合從迭代器產生自訂數組元素。
表現比較
經驗測試顯示顯著的性能各種測繪方法之間的差異。如果函數在 NumPy 中進行向量化,則直接使用該函數在速度方面是無與倫比的。對於自訂函數,向量化或 fromiter() 通常比基於列表理解的方法具有顯著優勢。
結論
在 NumPy 陣列上映射函數的最有效方法取決於特定的功能和資料特徵。如果可能,強烈建議利用本機 NumPy 函數。向量化和 fromiter() 為自訂函數提供了有效的替代方案。效能測試對於確定給定場景的最佳方法至關重要。
以上是在 NumPy 數組上映射函數的最有效方法是什麼?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

Python是解釋型語言,但也包含編譯過程。 1)Python代碼先編譯成字節碼。 2)字節碼由Python虛擬機解釋執行。 3)這種混合機制使Python既靈活又高效,但執行速度不如完全編譯型語言。

UseeAforloopWheniteratingOveraseQuenceOrforAspecificnumberoftimes; useAwhiLeLoopWhenconTinuingUntilAcIntiment.forloopsareIdealForkNownsences,而WhileLeleLeleLeleLeleLoopSituationSituationsItuationsItuationSuationSituationswithUndEtermentersitations。

pythonloopscanleadtoerrorslikeinfiniteloops,modifyingListsDuringteritation,逐個偏置,零indexingissues,andnestedloopineflinefficiencies

forloopsareadvantageousforknowniterations and sequests,供應模擬性和可讀性;而LileLoopSareIdealFordyNamicConcitionSandunknowniterations,提供ControloperRoverTermination.1)forloopsareperfectForeTectForeTerToratingOrtratingRiteratingOrtratingRitterlistlistslists,callings conspass,calplace,cal,ofstrings ofstrings,orstrings,orstrings,orstrings ofcces

pythonisehybridmodeLofCompilation和interpretation:1)thepythoninterpretercompilesourcecececodeintoplatform- interpententbybytecode.2)thepythonvirtualmachine(pvm)thenexecutecutestestestestestesthisbytecode,ballancingEaseofuseEfuseWithPerformance。

pythonisbothinterpretedAndCompiled.1)它的compiledTobyTecodeForportabilityAcrosplatforms.2)bytecodeisthenInterpreted,允許fordingfordforderynamictynamictymictymictymictyandrapiddefupment,儘管Ititmaybeslowerthananeflowerthanancompiledcompiledlanguages。

在您的知識之際,而foroopsareideal insinAdvance中,而WhileLoopSareBetterForsituations則youneedtoloopuntilaconditionismet

ForboopSareSusedwhenthentheneMberofiterationsiskNownInAdvance,而WhileLoopSareSareDestrationsDepportonAcondition.1)ForloopSareIdealForiteratingOverSequencesLikelistSorarrays.2)whileLeleLooleSuitableApeableableableableableableforscenarioscenarioswhereTheLeTheLeTheLeTeLoopContinusunuesuntilaspecificiccificcificCondond


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

Dreamweaver Mac版
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

EditPlus 中文破解版
體積小,語法高亮,不支援程式碼提示功能

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

SecLists
SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。