問題
標準方法,例如使用 pandas.read_csv(),在處理大量 CSV 檔案時通常會出現不足。這些方法是單線程的,由於磁碟 I/O 或記憶體限制,很快就會成為瓶頸。
終極 Python 程式設計師實作測驗
解決方案
透過並行化 CSV 操作,您可以利用多個 CPU 核心更快、更有效率地處理資料。本指南概述了使用以下技術:
- Dask:對 pandas 程式碼進行最小變更的平行計算。
- Polars:高效能 DataFrame 函式庫。
- Python 的多處理模組:自訂並行化。
- 檔案分割:使用較小的區塊進行分割和征服。
技巧
1.分割大檔案
將大型 CSV 檔案分解為較小的區塊可以進行並行處理。這是一個範例腳本:
import os def split_csv(file_path, lines_per_chunk=1000000): with open(file_path, 'r') as file: header = file.readline() file_count = 0 output_file = None for i, line in enumerate(file): if i % lines_per_chunk == 0: if output_file: output_file.close() file_count += 1 output_file = open(f'chunk_{file_count}.csv', 'w') output_file.write(header) output_file.write(line) if output_file: output_file.close() print(f"Split into {file_count} files.")
2.使用 Dask 進行平行處理
Dask 是用 Python 處理大規模資料的遊戲規則改變者。它可以毫不費力地並行化大型資料集上的操作:
import dask.dataframe as dd # Load the dataset as a Dask DataFrame df = dd.read_csv('large_file.csv') # Perform parallel operations result = df[df['column_name'] > 100].groupby('another_column').mean() # Save the result result.to_csv('output_*.csv', single_file=True)
Dask 透過對資料區塊進行操作並在可用核心之間智慧地調度任務來處理記憶體限制。
終極 Python 程式設計師實作測驗
3.用 Polar 來增壓
Polars 是一個相對較新的函式庫,它將 Rust 的速度與 Python 的靈活性結合在一起。它是為現代硬體設計的,處理 CSV 檔案的速度比 pandas 快得多:
import polars as pl # Read CSV using Polars df = pl.read_csv('large_file.csv') # Filter and aggregate data filtered_df = df.filter(pl.col('column_name') > 100).groupby('another_column').mean() # Write to CSV filtered_df.write_csv('output.csv')
Polars 在速度和並行性至關重要的情況下表現出色。它對於多核心系統特別有效。
4.多處理手動並行
如果您希望控制處理邏輯,Python 的多處理模組提供了一種並行化 CSV 操作的簡單方法:
from multiprocessing import Pool import pandas as pd def process_chunk(file_path): df = pd.read_csv(file_path) # Perform operations filtered_df = df[df['column_name'] > 100] return filtered_df if __name__ == '__main__': chunk_files = [f'chunk_{i}.csv' for i in range(1, 6)] with Pool(processes=4) as pool: results = pool.map(process_chunk, chunk_files) # Combine results combined_df = pd.concat(results) combined_df.to_csv('final_output.csv', index=False)
關鍵考慮因素
磁碟 I/O 與 CPU 限制
確保您的並行策略平衡 CPU 處理與磁碟讀取/寫入速度。根據您的瓶頸是 I/O 還是計算進行最佳化。記憶體開銷
與手動多重處理相比,Dask 或 Polars 等工具更節省記憶體。選擇符合您系統記憶體限制的工具。錯誤處理
並行處理會帶來偵錯和錯誤管理的複雜性。實施強大的日誌記錄和異常處理以確保可靠性。
終極 Python 程式設計師實作測驗
以上是在 Python 中優化大規模資料處理:並行化 CSV 操作指南的詳細內容。更多資訊請關注PHP中文網其他相關文章!

使用NumPy創建多維數組可以通過以下步驟實現:1)使用numpy.array()函數創建數組,例如np.array([[1,2,3],[4,5,6]])創建2D數組;2)使用np.zeros(),np.ones(),np.random.random()等函數創建特定值填充的數組;3)理解數組的shape和size屬性,確保子數組長度一致,避免錯誤;4)使用np.reshape()函數改變數組形狀;5)注意內存使用,確保代碼清晰高效。

播放innumpyisamethodtoperformoperationsonArraySofDifferentsHapesbyAutapityallate AligningThem.itSimplifififiesCode,增強可讀性,和Boostsperformance.Shere'shore'showitworks:1)較小的ArraySaraySaraysAraySaraySaraySaraySarePaddedDedWiteWithOnestOmatchDimentions.2)

forpythondataTastorage,choselistsforflexibilityWithMixedDatatypes,array.ArrayFormeMory-effficityHomogeneousnumericalData,andnumpyArraysForAdvancedNumericalComputing.listsareversareversareversareversArversatilebutlessEbutlesseftlesseftlesseftlessforefforefforefforefforefforefforefforefforefforlargenumerdataSets; arrayoffray.array.array.array.array.array.ersersamiddreddregro

Pythonlistsarebetterthanarraysformanagingdiversedatatypes.1)Listscanholdelementsofdifferenttypes,2)theyaredynamic,allowingeasyadditionsandremovals,3)theyofferintuitiveoperationslikeslicing,but4)theyarelessmemory-efficientandslowerforlargedatasets.

toAccesselementsInapyThonArray,useIndIndexing:my_array [2] accessEsthethEthErlement,returning.3.pythonosezero opitedEndexing.1)usepositiveandnegativeIndexing:my_list [0] fortefirstElment,fortefirstelement,my_list,my_list [-1] fornelast.2] forselast.2)

文章討論了由於語法歧義而導致的Python中元組理解的不可能。建議使用tuple()與發電機表達式使用tuple()有效地創建元組。 (159個字符)

本文解釋了Python中的模塊和包裝,它們的差異和用法。模塊是單個文件,而軟件包是帶有__init__.py文件的目錄,在層次上組織相關模塊。

文章討論了Python中的Docstrings,其用法和收益。主要問題:Docstrings對於代碼文檔和可訪問性的重要性。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

SublimeText3 Linux新版
SublimeText3 Linux最新版

記事本++7.3.1
好用且免費的程式碼編輯器

MantisBT
Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

SublimeText3漢化版
中文版,非常好用

Dreamweaver CS6
視覺化網頁開發工具