使用 Pandas GroupBy.agg() 在同一列上進行多個聚合
使用 Pandas 時,通常需要對同一列。雖然直觀,但在 agg() 方法中多次指定同一列的直接方法在語法上並不正確。這就引出瞭如何使用 GroupBy.agg() 有效且簡潔地將不同聚合函數應用於單一欄位的問題。
解決方案
截至2022-06- 20、多重聚合的建議做法是使用字典語法:
df.groupby('dummy').agg({ 'returns': {'Mean': np.mean, 'Sum': np.sum} })
在此例如, “returns”列與平均值和總和函數一起聚合。產生的 DataFrame 將包含兩個新欄位“Mean”和“Sum”,它們顯示各自的聚合。
歷史記錄
採用字典之前語法上,多重聚合有兩種替代方法:
- 傳遞作為列表的函數:
df.groupby('dummy').agg({'returns': [np.mean, np.sum]})
此方法將函數作為列表直接傳遞給agg()。 DataFrame 將包含兩個新列,分別包含平均值和總和聚合的結果。
- 將函數作為嵌套字典傳遞:
df.groupby('dummy').agg({'returns': {'f1': np.mean, 'f2': np.sum}})
與列表方法類似,函數作為字典中的字典傳遞。內部字典的鍵指定函數名稱,而值是聚合函數。 DataFrame 將為每個指定的函數名稱有一列。
以上是如何使用 Pandas GroupBy.agg() 在單一欄位上執行多個聚合?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。

選擇Python還是C 取決於項目需求:1)如果需要快速開發、數據處理和原型設計,選擇Python;2)如果需要高性能、低延遲和接近硬件的控制,選擇C 。

通過每天投入2小時的Python學習,可以有效提升編程技能。 1.學習新知識:閱讀文檔或觀看教程。 2.實踐:編寫代碼和完成練習。 3.複習:鞏固所學內容。 4.項目實踐:應用所學於實際項目中。這樣的結構化學習計劃能幫助你係統掌握Python並實現職業目標。

在兩小時內高效學習Python的方法包括:1.回顧基礎知識,確保熟悉Python的安裝和基本語法;2.理解Python的核心概念,如變量、列表、函數等;3.通過使用示例掌握基本和高級用法;4.學習常見錯誤與調試技巧;5.應用性能優化與最佳實踐,如使用列表推導式和遵循PEP8風格指南。

Python適合初學者和數據科學,C 適用於系統編程和遊戲開發。 1.Python簡潔易用,適用於數據科學和Web開發。 2.C 提供高性能和控制力,適用於遊戲開發和系統編程。選擇應基於項目需求和個人興趣。

Python更適合數據科學和快速開發,C 更適合高性能和系統編程。 1.Python語法簡潔,易於學習,適用於數據處理和科學計算。 2.C 語法複雜,但性能優越,常用於遊戲開發和系統編程。

每天投入兩小時學習Python是可行的。 1.學習新知識:用一小時學習新概念,如列表和字典。 2.實踐和練習:用一小時進行編程練習,如編寫小程序。通過合理規劃和堅持不懈,你可以在短時間內掌握Python的核心概念。

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

VSCode Windows 64位元 下載
微軟推出的免費、功能強大的一款IDE編輯器

禪工作室 13.0.1
強大的PHP整合開發環境

SublimeText3 Linux新版
SublimeText3 Linux最新版

Atom編輯器mac版下載
最受歡迎的的開源編輯器

SublimeText3 英文版
推薦:為Win版本,支援程式碼提示!