Pandas 的高性能笛卡爾積(CROSS JOIN)
在資料操作領域,笛卡爾積或CROSS JOIN 是一種有價值的操作,它結合了兩個或一對一或更多對多基礎上的更多DataFrame。此操作透過為輸入 DataFrame 中所有可能的元素組合建立新行來擴展原始資料集。
問題陳述
給定兩個具有唯一索引的 DataFrame:
left = pd.DataFrame({'col1': ['A', 'B', 'C'], 'col2': [1, 2, 3]}) right = pd.DataFrame({'col1': ['X', 'Y', 'Z'], 'col2': [20, 30, 50]})
目標是找到計算這些 DataFrame的笛卡爾積最有效的方法,結果如下輸出:
col1_x col2_x col1_y col2_y 0 A 1 X 20 1 A 1 Y 30 2 A 1 Z 50 3 B 2 X 20 4 B 2 Y 30 5 B 2 Z 50 6 C 3 X 20 7 C 3 Y 30 8 C 3 Z 50
最優解
方法1:臨時鍵列
一種方法是暫時指派一個「鍵」列兩個DataFrame的共同值:
left.assign(key=1).merge(right.assign(key=1), on='key').drop('key', 1)
此方法使用合併來執行在「key」列上進行多對多 JOIN。
方法 2:NumPy 笛卡爾積
對於較大的 DataFrame,高效能的解決方案是利用 NumPy的笛卡爾積實現:
def cartesian_product(*arrays): la = len(arrays) dtype = np.result_type(*arrays) arr = np.empty([len(a) for a in arrays] + [la], dtype=dtype) for i, a in enumerate(np.ix_(*arrays)): arr[...,i] = a return arr.reshape(-1, la)
函數從輸入產生所有可能的元素組合
方法3:廣義CROSS JOIN
廣義解決方案適用於具有非唯一或混合索引的DataFrame:
def cartesian_product_generalized(left, right): la, lb = len(left), len(right) idx = cartesian_product(np.ogrid[:la], np.ogrid[:lb]) return pd.DataFrame( np.column_stack([left.values[idx[:,0]], right.values[idx[:,1]]]))
此方法根據DataFrame 的笛卡爾積重新索引DataFrame
增強的解決方案
方法4:簡化的CROSS JOIN
方法4:簡化的CROSS JOIN
def cartesian_product_simplified(left, right): la, lb = len(left), len(right) ia2, ib2 = np.broadcast_arrays(*np.ogrid[:la,:lb]) return pd.DataFrame( np.column_stack([left.values[ia2.ravel()], right.values[ib2.ravel()]]))
方法4:簡化的CROSS JOIN
方法4:簡化的CROSS JOIN# ... (Benchmarking code not included here)方法4:簡化的CROSS JOIN
對於具有非混合資料類型的兩個DataFrame,可以使用進一步簡化的解決方案:
此方法使用廣播和 NumPy 的ogrid 用於產生 DataFrame 索引的笛卡爾積。 效能比較這些解決方案的效能因資料集大小和複雜性而異。以下基準提供了它們執行時間的相對比較:結果表明,基於 NumPy 的 cartesian_product 方法在大多數情況下優於其他解決方案,特別是當 DataFrame 大小增加時。 結論透過利用所提出的技術,資料分析師可以在 DataFrame 上高效地執行笛卡爾積,這是一種基本的方法資料操作和擴展的操作。這些方法即使在大型或複雜的資料集上也能實現最佳效能,從而實現高效的資料探索和分析。以上是如何使用 Pandas DataFrame 高效執行笛卡爾積(CROSS JOIN)?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

Tomergelistsinpython,YouCanusethe操作員,estextMethod,ListComprehension,Oritertools

在Python3中,可以通過多種方法連接兩個列表:1)使用 運算符,適用於小列表,但對大列表效率低;2)使用extend方法,適用於大列表,內存效率高,但會修改原列表;3)使用*運算符,適用於合併多個列表,不修改原列表;4)使用itertools.chain,適用於大數據集,內存效率高。

使用join()方法是Python中從列表連接字符串最有效的方法。 1)使用join()方法高效且易讀。 2)循環使用 運算符對大列表效率低。 3)列表推導式與join()結合適用於需要轉換的場景。 4)reduce()方法適用於其他類型歸約,但對字符串連接效率低。完整句子結束。

pythonexecutionistheprocessoftransformingpypythoncodeintoExecutablestructions.1)InternterPreterReadSthecode,ConvertingTingitIntObyTecode,whepythonvirtualmachine(pvm)theglobalinterpreterpreterpreterpreterlock(gil)the thepythonvirtualmachine(pvm)

Python的關鍵特性包括:1.語法簡潔易懂,適合初學者;2.動態類型系統,提高開發速度;3.豐富的標準庫,支持多種任務;4.強大的社區和生態系統,提供廣泛支持;5.解釋性,適合腳本和快速原型開發;6.多範式支持,適用於各種編程風格。

Python是解釋型語言,但也包含編譯過程。 1)Python代碼先編譯成字節碼。 2)字節碼由Python虛擬機解釋執行。 3)這種混合機制使Python既靈活又高效,但執行速度不如完全編譯型語言。

UseeAforloopWheniteratingOveraseQuenceOrforAspecificnumberoftimes; useAwhiLeLoopWhenconTinuingUntilAcIntiment.forloopsareIdealForkNownsences,而WhileLeleLeleLeleLeleLoopSituationSituationsItuationsItuationSuationSituationswithUndEtermentersitations。

pythonloopscanleadtoerrorslikeinfiniteloops,modifyingListsDuringteritation,逐個偏置,零indexingissues,andnestedloopineflinefficiencies


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SecLists
SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

MantisBT
Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境

SublimeText3漢化版
中文版,非常好用