將 Pandas DataFrame 轉換為字典
要將 Pandas DataFrame 轉換為字典,請使用 to_dict() 方法。預設情況下,此方法使用 DataFrame 的列名作為字典鍵,並為每個列建立索引:資料對的字典。
df.to_dict()
自訂字典輸出
取得以下清單每列的值而不是索引:資料對的字典,請使用 orient 參數。以下是可用的方向:
- dict:預設方向(列名稱作為鍵,索引:資料對作為值)
- 列表列表 :鍵是列名,值是列列表data
- series :鍵是列名稱,值是包含資料的 Series物件
- split :將列/資料/索引分割為單獨的鍵
- 記錄 :每一行成為一個字典,以列名作為鍵和資料值作為值
- 索引 :與「記錄」類似,但鍵是索引標籤而不是列表
df = pd.DataFrame({'ID': ['p', 'q', 'r'], 'A': [1, 4, 4], 'B': [3, 3, 0], 'C': [2, 2, 9]})將此DataFrame轉換為「ID」為的字典鍵和其他列的值作為列表,使用以下程式碼:
df.set_index('ID').T.to_dict('list')這將傳回以下字典:
{'p': [1, 3, 2], 'q': [4, 3, 2], 'r': [4, 0, 9]}其他方向這裡是不同的例子方向:
dict
:df.to_dict('dict')輸出:
{'ID': {'p': 'p', 'q': 'q', 'r': 'r'}, 'A': {0: 1, 1: 4, 2: 4}, 'B': {0: 3, 1: 3, 2: 0}, 'C': {0: 2, 1: 2, 2: 9}}
l ist
:df.to_dict('list')輸出:
{'ID': ['p', 'q', 'r'], 'A': [1, 4, 4], 'B': [3, 3, 0], 'C': [2, 2, 9]}
系列
:df.to_dict('series')輸出:
{'ID': 0 p 1 q 2 r Name: ID, dtype: object, 'A': 0 1 1 4 2 4 Name: A, dtype: int64, 'B': 0 3 1 3 2 0 Name: B, dtype: int64, 'C': 0 2 1 2 2 9 Name: C, dtype: int64}
分割
:df.to_dict('split')輸出:
{'columns': ['ID', 'A', 'B', 'C'], 'data': [['p', 1, 3, 2], ['q', 4, 3, 2], ['r', 4, 0, 9]], 'index': [0, 1, 2]}
記錄
df.to_dict('records')記錄
[{'ID': 'p', 'A': 1, 'B': 3, 'C': 2}, {'ID': 'q', 'A': 4, 'B': 3, 'C': 2}, {'ID': 'r', 'A': 4, 'B': 0, 'C': 9}]:
輸出:
df.to_dict('index')索引
{0: {'ID': 'p', 'A': 1, 'B': 3, 'C': 2}, 1: {'ID': 'q', 'A': 4, 'B': 3, 'C': 2}, 2: {'ID': 'r', 'A': 4, 'B': 0, 'C': 9}}:輸出:
以上是如何將 Pandas DataFrame 轉換為不同方向的字典?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本教程演示如何使用Python處理Zipf定律這一統計概念,並展示Python在處理該定律時讀取和排序大型文本文件的效率。 您可能想知道Zipf分佈這個術語是什麼意思。要理解這個術語,我們首先需要定義Zipf定律。別擔心,我會盡量簡化說明。 Zipf定律 Zipf定律簡單來說就是:在一個大型自然語言語料庫中,最頻繁出現的詞的出現頻率大約是第二頻繁詞的兩倍,是第三頻繁詞的三倍,是第四頻繁詞的四倍,以此類推。 讓我們來看一個例子。如果您查看美國英語的Brown語料庫,您會注意到最頻繁出現的詞是“th

本文解釋瞭如何使用美麗的湯庫來解析html。 它詳細介紹了常見方法,例如find(),find_all(),select()和get_text(),以用於數據提取,處理不同的HTML結構和錯誤以及替代方案(SEL)

處理嘈雜的圖像是一個常見的問題,尤其是手機或低分辨率攝像頭照片。 本教程使用OpenCV探索Python中的圖像過濾技術來解決此問題。 圖像過濾:功能強大的工具圖像過濾器

本文比較了Tensorflow和Pytorch的深度學習。 它詳細介紹了所涉及的步驟:數據準備,模型構建,培訓,評估和部署。 框架之間的關鍵差異,特別是關於計算刻度的

Python是數據科學和處理的最愛,為高性能計算提供了豐富的生態系統。但是,Python中的並行編程提出了獨特的挑戰。本教程探討了這些挑戰,重點是全球解釋

本教程演示了在Python 3中創建自定義管道數據結構,利用類和操作員超載以增強功能。 管道的靈活性在於它能夠將一系列函數應用於數據集的能力,GE

Python 對象的序列化和反序列化是任何非平凡程序的關鍵方面。如果您將某些內容保存到 Python 文件中,如果您讀取配置文件,或者如果您響應 HTTP 請求,您都會進行對象序列化和反序列化。 從某種意義上說,序列化和反序列化是世界上最無聊的事情。誰會在乎所有這些格式和協議?您想持久化或流式傳輸一些 Python 對象,並在以後完整地取回它們。 這是一種在概念層面上看待世界的好方法。但是,在實際層面上,您選擇的序列化方案、格式或協議可能會決定程序運行的速度、安全性、維護狀態的自由度以及與其他系

Python的statistics模塊提供強大的數據統計分析功能,幫助我們快速理解數據整體特徵,例如生物統計學和商業分析等領域。無需逐個查看數據點,只需查看均值或方差等統計量,即可發現原始數據中可能被忽略的趨勢和特徵,並更輕鬆、有效地比較大型數據集。 本教程將介紹如何計算平均值和衡量數據集的離散程度。除非另有說明,本模塊中的所有函數都支持使用mean()函數計算平均值,而非簡單的求和平均。 也可使用浮點數。 import random import statistics from fracti


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

mPDF
mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

SublimeText3 英文版
推薦:為Win版本,支援程式碼提示!

Dreamweaver Mac版
視覺化網頁開發工具

Atom編輯器mac版下載
最受歡迎的的開源編輯器

禪工作室 13.0.1
強大的PHP整合開發環境