搜尋
首頁後端開發Python教學使用 Amazon Bedrock Converse API 節省時間!

透過 Bedrock,您可以存取一系列不同的大型語言模型(例如 Claude、Mistral、Llama 和 Amazon Titan),並且隨時都有新版本可用。

有選擇固然很棒,但必須為每個模型編寫不同的請求程式碼卻很痛苦。

這就是為什麼在比較不同基礎模型的輸出時,Amazon Bedrock Converse API 將為您節省大量時間和精力!

一致性是關鍵!

Converse API 是一個一致的接口,適用於所有支援訊息/系統提示的模型。這意味著您只需編寫一次程式碼,即可用它來試驗不同的模型。

這是一個說明其工作原理的範例,此練習的成本應

配置模型訪問

開始之前,請務必檢查您想要使用的模型在您所在的地區是否可用,並且您已啟用對它們的訪問,這是我正在使用的模型,您可以選擇這些模型或選擇您自己的模型:
anthropic.claude-v2
anthropic.claude-3-俳句
克勞德 3.5 十四行詩
小米斯特拉爾

Save time with the Amazon Bedrock Converse API!

1) 我們可以使用 AWS 控制台中的 CloudShell 完成所有操作。

Save time with the Amazon Bedrock Converse API!

2) 當 CloudShell 準備好後,安裝 boto3,它是適用於 Python 的 AWS 開發工具包
pip 安裝 boto3

Save time with the Amazon Bedrock Converse API!

3) 從 GitHub 下載名為 converse_demo.py 的檔案 您可以使用 wget 並提供檔案的原始路徑來執行此操作:

wget https://raw.githubusercontent.com/fayekins/demos/refs/heads/main/converse_demo.py

Save time with the Amazon Bedrock Converse API!

converse_demo.py

#first we import boto3 and json 
import boto3, json

#create a boto3 session - stores config state and allows you to create service clients
session = boto3.Session()

#create a Bedrock Runtime Client instance - used to send API calls to AI models in Bedrock
bedrock = session.client(service_name='bedrock-runtime')

#here's our prompt telling the model what we want it to do, we can change this later
system_prompts = [{"text": "You are an app that creates reading lists for book groups."}]

#define an empty message list - to be used to pass the messages to the model
message_list = []

#here’s the message that I want to send to the model, we can change this later if we want
initial_message = {
            "role": "user",
               "content": [{"text": "Create a list of five novels suitable for a book group who are interested in classic novels."}],
               }

#the message above is appended to the message_list
message_list.append(initial_message)

#make an API call to the Bedrock Converse API, we define the model to use, the message, and inference parameters to use as well
response = bedrock.converse(
modelId="anthropic.claude-v2",
messages=message_list,
system=system_prompts,
inferenceConfig={
            "maxTokens": 2048,
            "temperature": 0,
            "topP": 1
            },
)

#invoke converse with all the parameters we provided above and after that, print the result 
response_message = response['output']['message']
print(json.dumps(response_message, indent=4))

4) 像這樣運行Python程式碼:

python converse_demo.py

它應該會給你類似這樣的輸出:

Save time with the Amazon Bedrock Converse API!

5) 我們也可以使用不同的模型來運行相同的程式碼,方法是替換程式碼中的模型 ID,如下所示:

anthropic.claude-3-haiku-20240307-v1:0

比較第二個模型的輸出,略有不同:

Save time with the Amazon Bedrock Converse API!

6) 我們可以用另一個版本再測試:

anthropic.claude-3-5-sonnet-20240620-v1:0

Save time with the Amazon Bedrock Converse API!

當 Claude 的新版本發佈時,我們可以請求訪問,然後只需在程式碼中替換模型的名稱即可!

訪問被拒絕錯誤

如果您看到與此類似的錯誤,則僅表示您正在嘗試使用您尚無權存取的模型。只需請求存取該模型,並在授予存取權限後重試。

Save time with the Amazon Bedrock Converse API!

7) 我還嘗試使用不同的模型供應商,將模型 ID 更改為:

mistral.mistral-small-2402-v1:0

Save time with the Amazon Bedrock Converse API!

因此,Converse API 為您提供了一個簡單、一致的 API,可與所有支援訊息的 Amazon Bedrock 模型配合使用。這意味著您可以編寫一次程式碼並將其與不同的模型一起使用來比較結果!

所以下次您與 Bedrock 合作時,幫自己一個忙,試試 Converse API,稍後再感謝我!

以上是使用 Amazon Bedrock Converse API 節省時間!的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
如何使用Python查找文本文件的ZIPF分佈如何使用Python查找文本文件的ZIPF分佈Mar 05, 2025 am 09:58 AM

本教程演示如何使用Python處理Zipf定律這一統計概念,並展示Python在處理該定律時讀取和排序大型文本文件的效率。 您可能想知道Zipf分佈這個術語是什麼意思。要理解這個術語,我們首先需要定義Zipf定律。別擔心,我會盡量簡化說明。 Zipf定律 Zipf定律簡單來說就是:在一個大型自然語言語料庫中,最頻繁出現的詞的出現頻率大約是第二頻繁詞的兩倍,是第三頻繁詞的三倍,是第四頻繁詞的四倍,以此類推。 讓我們來看一個例子。如果您查看美國英語的Brown語料庫,您會注意到最頻繁出現的詞是“th

我如何使用美麗的湯來解析HTML?我如何使用美麗的湯來解析HTML?Mar 10, 2025 pm 06:54 PM

本文解釋瞭如何使用美麗的湯庫來解析html。 它詳細介紹了常見方法,例如find(),find_all(),select()和get_text(),以用於數據提取,處理不同的HTML結構和錯誤以及替代方案(SEL)

如何在Python中下載文件如何在Python中下載文件Mar 01, 2025 am 10:03 AM

Python 提供多種從互聯網下載文件的方法,可以使用 urllib 包或 requests 庫通過 HTTP 進行下載。本教程將介紹如何使用這些庫通過 Python 從 URL 下載文件。 requests 庫 requests 是 Python 中最流行的庫之一。它允許發送 HTTP/1.1 請求,無需手動將查詢字符串添加到 URL 或對 POST 數據進行表單編碼。 requests 庫可以執行許多功能,包括: 添加表單數據 添加多部分文件 訪問 Python 的響應數據 發出請求 首

python中的圖像過濾python中的圖像過濾Mar 03, 2025 am 09:44 AM

處理嘈雜的圖像是一個常見的問題,尤其是手機或低分辨率攝像頭照片。 本教程使用OpenCV探索Python中的圖像過濾技術來解決此問題。 圖像過濾:功能強大的工具圖像過濾器

如何使用Python使用PDF文檔如何使用Python使用PDF文檔Mar 02, 2025 am 09:54 AM

PDF 文件因其跨平台兼容性而廣受歡迎,內容和佈局在不同操作系統、閱讀設備和軟件上保持一致。然而,與 Python 處理純文本文件不同,PDF 文件是二進製文件,結構更複雜,包含字體、顏色和圖像等元素。 幸運的是,借助 Python 的外部模塊,處理 PDF 文件並非難事。本文將使用 PyPDF2 模塊演示如何打開 PDF 文件、打印頁面和提取文本。關於 PDF 文件的創建和編輯,請參考我的另一篇教程。 準備工作 核心在於使用外部模塊 PyPDF2。首先,使用 pip 安裝它: pip 是 P

如何在django應用程序中使用redis緩存如何在django應用程序中使用redis緩存Mar 02, 2025 am 10:10 AM

本教程演示瞭如何利用Redis緩存以提高Python應用程序的性能,特別是在Django框架內。 我們將介紹REDIS安裝,Django配置和性能比較,以突出顯示BENE

引入自然語言工具包(NLTK)引入自然語言工具包(NLTK)Mar 01, 2025 am 10:05 AM

自然語言處理(NLP)是人類語言的自動或半自動處理。 NLP與語言學密切相關,並與認知科學,心理學,生理學和數學的研究有聯繫。在計算機科學

如何使用TensorFlow或Pytorch進行深度學習?如何使用TensorFlow或Pytorch進行深度學習?Mar 10, 2025 pm 06:52 PM

本文比較了Tensorflow和Pytorch的深度學習。 它詳細介紹了所涉及的步驟:數據準備,模型構建,培訓,評估和部署。 框架之間的關鍵差異,特別是關於計算刻度的

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
2 週前By尊渡假赌尊渡假赌尊渡假赌
倉庫:如何復興隊友
4 週前By尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island冒險:如何獲得巨型種子
3 週前By尊渡假赌尊渡假赌尊渡假赌

熱工具

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

將Eclipse與SAP NetWeaver應用伺服器整合。

mPDF

mPDF

mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

Atom編輯器mac版下載

Atom編輯器mac版下載

最受歡迎的的開源編輯器