如何使用SciPy 或NumPy 計算一維數組的運行平均值
運行平均值,也稱為移動平均值,是當當視窗在資料上滑動時,計算指定視窗內資料點子集的平均值的統計量測。在 Python 中,有多種使用 SciPy 和 NumPy 函數計算運行平均值的方法。
SciPy Function
SciPy 並沒有用於計算運行平均值的專用函數。但是,您可以使用 NumPy 中的 np.convolve 函數來實現運行平均值計算。
NumPy 函數
NumPy 的 np.convolve 函數執行卷積運算。在運行平均值的背景下,卷積是將內核應用於資料並對結果求和的過程。為了計算運行平均值,內核是均勻分佈的,它為視窗內的每個數據點賦予相同的權重。
要使用np.convolve 計算運行平均值,可以使用以下程式碼:
其中:
- 陣列是要計算其運行的一維數組mean。
- window_size 是計算平均值的視窗的大小。
- mode='valid' 指定忽略數組的邊緣,從而得到一個輸出數組:比輸入數組短window_size - 1.
說明
np.ones(window_size) / window_size創建一個具有統一權重的核心。 np.convolve 將此內核應用於數組,從而為每個視窗產生一個均值數組。 mode='valid' 參數確保數組的邊緣不包含在計算中,從而產生反映整個資料的運行平均值的輸出數組。
邊緣處理
np.convolve 的 mode 參數指定如何處理陣列的邊緣。不同的模式會導致不同的邊緣行為。下表列出了常用的模式:
Mode | Edge Handling |
---|---|
full | Pads the array with zeros and returns an output array that is the same size as the input array. |
same | Pads the array with zeros to match the kernel size and returns an output array that is the same size as the input array. |
valid | Ignores the edges of the array, resulting in an output array that is shorter than the input array. |
模式的選擇取決於您的特定要求以及您想要對數組邊緣的運行平均值的解釋。
以上是如何使用 NumPy 的'np.convolve”函數計算一維數組的運行平均值?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

Arraysinpython,尤其是Vianumpy,ArecrucialInsCientificComputingfortheireftheireffertheireffertheirefferthe.1)Heasuedfornumerericalicerationalation,dataAnalysis和Machinelearning.2)Numpy'Simpy'Simpy'simplementIncressionSressirestrionsfasteroperoperoperationspasterationspasterationspasterationspasterationspasterationsthanpythonlists.3)inthanypythonlists.3)andAreseNableAblequick

你可以通過使用pyenv、venv和Anaconda來管理不同的Python版本。 1)使用pyenv管理多個Python版本:安裝pyenv,設置全局和本地版本。 2)使用venv創建虛擬環境以隔離項目依賴。 3)使用Anaconda管理數據科學項目中的Python版本。 4)保留系統Python用於系統級任務。通過這些工具和策略,你可以有效地管理不同版本的Python,確保項目順利運行。

numpyarrayshaveseveraladagesoverandastardandpythonarrays:1)基於基於duetoc的iMplation,2)2)他們的aremoremoremorymorymoremorymoremorymoremorymoremoremory,尤其是WithlargedAtasets和3)效率化,效率化,矢量化函數函數函數函數構成和穩定性構成和穩定性的操作,製造

數組的同質性對性能的影響是雙重的:1)同質性允許編譯器優化內存訪問,提高性能;2)但限制了類型多樣性,可能導致效率低下。總之,選擇合適的數據結構至關重要。

到CraftCraftExecutablePythcripts,lollow TheSebestPractices:1)Addashebangline(#!/usr/usr/bin/envpython3)tomakethescriptexecutable.2)setpermissionswithchmodwithchmod xyour_script.3)

numpyArraysareAreBetterFornumericalialoperations andmulti-demensionaldata,而learthearrayModuleSutableforbasic,內存效率段

numpyArraySareAreBetterForHeAvyNumericalComputing,而lelethearRayModulesiutable-usemoblemory-connerage-inderabledsswithSimpleDatateTypes.1)NumpyArsofferVerverVerverVerverVersAtility andPerformanceForlargedForlargedAtatasetSetsAtsAndAtasEndCompleXoper.2)

ctypesallowscreatingingangandmanipulatingc-stylarraysinpython.1)usectypestoInterfacewithClibrariesForperfermance.2)createc-stylec-stylec-stylarraysfornumericalcomputations.3)passarraystocfunctions foreforfunctionsforeffortions.however.however,However,HoweverofiousofmemoryManageManiverage,Pressiveo,Pressivero


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

PhpStorm Mac 版本
最新(2018.2.1 )專業的PHP整合開發工具

Atom編輯器mac版下載
最受歡迎的的開源編輯器

WebStorm Mac版
好用的JavaScript開發工具

SecLists
SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

EditPlus 中文破解版
體積小,語法高亮,不支援程式碼提示功能