第 1 部分介紹了使用 pgvector 設定的 PostgreSQL,第 2 部分使用 OpenAI 嵌入實作了向量搜尋。最後一部分示範如何使用 Ollama 在本地運行向量搜尋! ✨
內容
- 內容
- 為什麼是奧拉馬?
- 使用 Docker 設定 Ollama
- 資料庫更新
- 實作
- 搜尋查詢
- 性能提示
- 故障排除
- OpenAI 與 Ollama
- 總結
為什麼是奧拉馬? ?
Ollama 讓您在本地運行 AI 模型:
- 離線操作,更好的資料隱私
- 無 API 成本
- 快速反應時間
我們將在 Ollama 中使用 nomic-embed-text 模型,該模型建立 768 維向量(相較之下 OpenAI 為 1536 維)。
使用 Docker 設定 Ollama ?
要將 Ollama 新增至您的 Docker 設定中,請將此服務新增至 compose.yml:
services: db: # ... (existing db service) ollama: image: ollama/ollama container_name: ollama-service ports: - "11434:11434" volumes: - ollama_data:/root/.ollama data_loader: # ... (existing data_loader service) environment: - OLLAMA_HOST=ollama depends_on: - db - ollama volumes: pgdata: ollama_data:
然後,啟動服務並拉取模型:
docker compose up -d # Pull the embedding model docker compose exec ollama ollama pull nomic-embed-text # Test embedding generation curl http://localhost:11434/api/embed -d '{ "model": "nomic-embed-text", "input": "Hello World" }'
資料庫更新?
更新資料庫以儲存 Ollama 嵌入:
-- Connect to the database docker compose exec db psql -U postgres -d example_db -- Add a column for Ollama embeddings ALTER TABLE items ADD COLUMN embedding_ollama vector(768);
全新安裝,請更新 postgres/schema.sql:
CREATE TABLE items ( id SERIAL PRIMARY KEY, name VARCHAR(255) NOT NULL, item_data JSONB, embedding vector(1536), # OpenAI embedding_ollama vector(768) # Ollama );
執行 ?
更新requirements.txt以安裝Ollama Python函式庫:
ollama==0.3.3
以下是 load_data.py 的範例更新,用於新增 Ollama 嵌入:
import ollama # New import def get_embedding_ollama(text: str): """Generate embedding using Ollama API""" response = ollama.embed( model='nomic-embed-text', input=text ) return response["embeddings"][0] def load_books_to_db(): """Load books with embeddings into PostgreSQL""" books = fetch_books() for book in books: description = ( f"Book titled '{book['title']}' by {', '.join(book['authors'])}. " f"Published in {book['first_publish_year']}. " f"This is a book about {book['subject']}." ) # Generate embeddings with both OpenAI and Ollama embedding = get_embedding(description) # OpenAI embedding_ollama = get_embedding_ollama(description) # Ollama # Store in the database store_book(book["title"], json.dumps(book), embedding, embedding_ollama)
請注意,為了清楚起見,這是一個簡化版本。完整的源代碼在這裡。
如您所見,Ollama API 結構與 OpenAI 類似!
搜尋查詢 ?
使用 Ollama 嵌入檢索相似項目的搜尋查詢:
-- View first 5 dimensions of an embedding SELECT name, (replace(replace(embedding_ollama::text, '[', '{'), ']', '}')::float[])[1:5] as first_dimensions FROM items; -- Search for books about web development: WITH web_book AS ( SELECT embedding_ollama FROM items WHERE name LIKE '%Web%' LIMIT 1 ) SELECT item_data->>'title' as title, item_data->>'authors' as authors, embedding_ollama (SELECT embedding_ollama FROM web_book) as similarity FROM items ORDER BY similarity LIMIT 3;
性能提示?
新增索引
CREATE INDEX ON items USING ivfflat (embedding_ollama vector_cosine_ops) WITH (lists = 100);
資源需求
- RAM:此型號約 2GB
- 第一個查詢:模型載入預計會有輕微延遲
- 後續查詢:~50ms 回應時間
GPU支援
如果處理大型資料集,GPU 支援可以大幅加快嵌入生成速度。詳情請參考 Ollama Docker 映像。
故障排除?
連線被拒絕錯誤
Ollama 圖書館需要知道在哪裡可以找到 Ollama 服務。在 data_loader 服務中設定 OLLAMA_HOST 環境變數:
data_loader: environment: - OLLAMA_HOST=ollama
找不到型號錯誤
手動拉取模型:
docker compose exec ollama ollama pull nomic-embed-text
或者,您可以新增一個腳本,使用 ollama.pull(
高記憶體使用率
- 重啟 Ollama 服務
- 考慮使用較小的模型
OpenAI 與 Ollama ⚖️
Feature | OpenAI | Ollama |
---|---|---|
Vector Dimensions | 1536 | 768 |
Privacy | Requires API calls | Fully local |
Cost | Pay per API call | Free |
Speed | Network dependent | ~50ms/query |
Setup | API key needed | Docker only |
包起來 ?
本教學僅介紹如何使用 Ollama 設定本地向量搜尋。現實世界的應用程式通常包含附加功能,例如:
- 查詢最佳化與預處理
- 混合搜尋(與全文搜尋結合)
- 與網路介面整合
- 安全與性能考量
完整的原始程式碼,包括使用 FastAPI 建立的簡單 API,可在 GitHub 上取得。歡迎 PR 和回饋!
資源:
- Ollama 文件
- Ollama Python 函式庫
- Ollama 嵌入模型
有問題或回饋嗎?請在下面發表評論! ?
以上是使用 Ollama 實現向量搜尋的部分的詳細內容。更多資訊請關注PHP中文網其他相關文章!

pythonuseshybridapprace,ComminingCompilationTobyTecoDeAndInterpretation.1)codeiscompiledtoplatform-Indepententbybytecode.2)bytecodeisisterpretedbybythepbybythepythonvirtualmachine,增強效率和通用性。

theKeyDifferencesBetnewpython's“ for”和“ for”和“ loopsare:1)” for“ loopsareIdealForiteringSequenceSquencesSorkNowniterations,而2)”,而“ loopsareBetterforConterContinuingUntilacTientInditionIntionismetismetistismetistwithOutpredefinedInedIterations.un

在Python中,可以通過多種方法連接列表並管理重複元素:1)使用 運算符或extend()方法可以保留所有重複元素;2)轉換為集合再轉回列表可以去除所有重複元素,但會丟失原有順序;3)使用循環或列表推導式結合集合可以去除重複元素並保持原有順序。

fasteStmethodMethodMethodConcatenationInpythondependersonListsize:1)forsmalllists,operatorseffited.2)forlargerlists,list.extend.extend()orlistComprechensionfaster,withextendEffaster,withExtendEffers,withextend()withextend()是extextend()asmoremory-ememory-emmoremory-emmoremory-emmodifyinginglistsin-place-place-place。

toInSerteLementIntoApythonList,useAppend()toaddtotheend,insert()foreSpificPosition,andextend()formultiplelements.1)useappend()foraddingsingleitemstotheend.2)useAddingsingLeitemStotheend.2)useeapecificindex,toadapecificindex,toadaSpecificIndex,toadaSpecificIndex,blyit'ssssssslorist.3 toaddextext.3

pythonlistsareimplementedasdynamicarrays,notlinkedlists.1)他們areStoredIncoNtiguulMemoryBlocks,mayrequireRealLealLocationWhenAppendingItems,EmpactingPerformance.2)LinkesedlistSwoldOfferefeRefeRefeRefeRefficeInsertions/DeletionsButslowerIndexeDexedAccess,Lestpypytypypytypypytypy

pythonoffersFourmainMethodStoreMoveElement Fromalist:1)刪除(值)emovesthefirstoccurrenceofavalue,2)pop(index)emovesanderturnsanelementataSpecifiedIndex,3)delstatementremoveselemsbybybyselementbybyindexorslicebybyindexorslice,and 4)

toresolvea“ dermissionded”錯誤Whenrunningascript,跟隨台詞:1)CheckAndAdjustTheScript'Spermissions ofchmod xmyscript.shtomakeitexecutable.2)nesureThEseRethEserethescriptistriptocriptibationalocatiforecationAdirectorywherewhereyOuhaveWritePerMissionsyOuhaveWritePermissionsyYouHaveWritePermissions,susteSyAsyOURHomeRecretectory。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

Dreamweaver CS6
視覺化網頁開發工具

PhpStorm Mac 版本
最新(2018.2.1 )專業的PHP整合開發工具

SecLists
SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。