每個實例屬性與單一實例類別的類別屬性
在Python程式設計中,當建立僅具有單一實例的類別時,通常會考慮使用實例屬性還是類別屬性來管理資料。
實例屬性
實例屬性特定於類別的每個實例,並在實例化實例時建立。這種方法確保每個實例都有自己唯一的一組屬性。
類別屬性
類別屬性在類別的所有實例之間共用在建立任何實例之前,它們可以作為類別定義的一部分使用。類別屬性提供了一種方便的方法來定義對所有實例都保持不變的常數或共用值。
單一實例類別使用哪一個?
處理時對於單一實例類,實例屬性和類別屬性之間的選擇較不重要。但是,應考慮性能注意事項和編碼約定。
效能注意事項
類別屬性的存取速度稍快,因為它們不需要額外的查找等級存取實例的屬性。在大多數情況下,效能差異可以忽略不計,但如果最佳化至關重要,那麼使用類別屬性可能會有所幫助。
編碼約定與習慣用法
Python 的編碼約定有利於實例屬性資料在實例之間變化。類別屬性通常用於不應在運行時更改的常數或共享資料。
因此,如果類別只有一個實例並且屬性預計在實例之間保持不變,使用首選實例屬性。 這種方法符合 Python 的編碼約定,並且比類別屬性提供了輕微的效能優勢。
以上是實例屬性或類別屬性:對於 Python 的單例類別來說,哪個更好?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本教程演示如何使用Python處理Zipf定律這一統計概念,並展示Python在處理該定律時讀取和排序大型文本文件的效率。 您可能想知道Zipf分佈這個術語是什麼意思。要理解這個術語,我們首先需要定義Zipf定律。別擔心,我會盡量簡化說明。 Zipf定律 Zipf定律簡單來說就是:在一個大型自然語言語料庫中,最頻繁出現的詞的出現頻率大約是第二頻繁詞的兩倍,是第三頻繁詞的三倍,是第四頻繁詞的四倍,以此類推。 讓我們來看一個例子。如果您查看美國英語的Brown語料庫,您會注意到最頻繁出現的詞是“th

處理嘈雜的圖像是一個常見的問題,尤其是手機或低分辨率攝像頭照片。 本教程使用OpenCV探索Python中的圖像過濾技術來解決此問題。 圖像過濾:功能強大的工具圖像過濾器

本文解釋瞭如何使用美麗的湯庫來解析html。 它詳細介紹了常見方法,例如find(),find_all(),select()和get_text(),以用於數據提取,處理不同的HTML結構和錯誤以及替代方案(SEL)

Python是數據科學和處理的最愛,為高性能計算提供了豐富的生態系統。但是,Python中的並行編程提出了獨特的挑戰。本教程探討了這些挑戰,重點是全球解釋

本文比較了Tensorflow和Pytorch的深度學習。 它詳細介紹了所涉及的步驟:數據準備,模型構建,培訓,評估和部署。 框架之間的關鍵差異,特別是關於計算刻度的

本教程演示了在Python 3中創建自定義管道數據結構,利用類和操作員超載以增強功能。 管道的靈活性在於它能夠將一系列函數應用於數據集的能力,GE

Python 對象的序列化和反序列化是任何非平凡程序的關鍵方面。如果您將某些內容保存到 Python 文件中,如果您讀取配置文件,或者如果您響應 HTTP 請求,您都會進行對象序列化和反序列化。 從某種意義上說,序列化和反序列化是世界上最無聊的事情。誰會在乎所有這些格式和協議?您想持久化或流式傳輸一些 Python 對象,並在以後完整地取回它們。 這是一種在概念層面上看待世界的好方法。但是,在實際層面上,您選擇的序列化方案、格式或協議可能會決定程序運行的速度、安全性、維護狀態的自由度以及與其他系

Python的statistics模塊提供強大的數據統計分析功能,幫助我們快速理解數據整體特徵,例如生物統計學和商業分析等領域。無需逐個查看數據點,只需查看均值或方差等統計量,即可發現原始數據中可能被忽略的趨勢和特徵,並更輕鬆、有效地比較大型數據集。 本教程將介紹如何計算平均值和衡量數據集的離散程度。除非另有說明,本模塊中的所有函數都支持使用mean()函數計算平均值,而非簡單的求和平均。 也可使用浮點數。 import random import statistics from fracti


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

SublimeText3漢化版
中文版,非常好用

mPDF
mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

SublimeText3 Linux新版
SublimeText3 Linux最新版

MantisBT
Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

SAP NetWeaver Server Adapter for Eclipse
將Eclipse與SAP NetWeaver應用伺服器整合。