首頁 >後端開發 >Python教學 >在發送給法學碩士之前刪除 PII 的簡單方法

在發送給法學碩士之前刪除 PII 的簡單方法

Barbara Streisand
Barbara Streisand原創
2024-11-25 20:20:18340瀏覽

An easy way to remove PII before sending to LLMs

並非所有場景都需要完美的匿名化。在不太嚴重的情況下,輕量級匿名化管道就足夠了。在這裡,我分享了一種基於 Python 的方法,利用 GLiNER、Faker 和 Rapidfuzz,透過用真實的佔位符替換敏感實體來匿名化文字。

代碼首先使用 GLiNER 來識別敏感實體(例如姓名、國家/地區和職業)。然後,它用 Faker 產生的虛假實體取代這些實體。近似字串匹配 (rapidfuzz) 確保即使文本中的變化也是匿名的。經過LLM處理後,原始實體被恢復。

此方法是為不強制要求完美匿名的非關鍵用例而設計。例如,在不保存資料的情況下分析評論或回答網站上聊天機器人的查詢通常屬於不太嚴重的情況。該代碼並不完美,但足以幫助您入門。

from gliner import GLiNER
from faker import Faker
from faker.providers import job
import google.generativeai as genai
import re
import warnings
from rapidfuzz import process, utils
warnings.filterwarnings("ignore")

genai.configure(api_key="key")
model_llm = genai.GenerativeModel("gemini-1.5-flash-002")
fake = Faker()
fake.add_provider(job)
model_gliner = GLiNER.from_pretrained("urchade/gliner_small-v2.1")

# let's say we have this prompt along with context that we want to anonymize before sending to LLM
prompt= f"""Given the context, answer the question. \n context: Hi, I am Mayank Laddha.  I lives in India. I love my country. But I would like to go to Singapore once. I am a software developer.\n question: Where does Mayank Laddha want to go?"
"""
# Perform entity prediction
labels = ["Person", "Country", "Profession"]
entities = model_gliner.predict_entities(prompt, labels, threshold=0.4)
print(entities)

# create a replacement dictionary
replacement = {}
for entity in entities: 
    if "Person" in entity["label"] and entity["text"] not in replacement:
        fake_set = {fake.name() for _ in range(3)}
        fake_set.discard(entity["text"])
        new_name = fake_set.pop()
        replacement[entity["text"]] = new_name
    elif "Country" in entity["label"] and entity["text"] not in replacement:
        name_set = {fake.country() for _ in range(10)}
        print(name_set)
        name_set.discard(entity["text"])
        new_name = name_set.pop()
        replacement[entity["text"]] = new_name
    elif "Profession" in entity["label"] and entity["text"] not in replacement:
        name_set = {fake.job() for _ in range(20)}
        name_set = {k for k in name_set if len(k.split())==1}
        print(name_set)
        name_set.discard(entity["text"])
        new_name = name_set.pop()
        replacement[entity["text"]] = new_name

#also create a reverse dictionary
replacement_reversed = {v: k for k, v in replacement.items()}

#perform replacement
for k, v in replacement.items():
    # Split text into a list of words
    words = prompt.split()  
    n = len(k.split()) 
    # so the key appears fully in choices
    choices = [' '.join(words[i:i+n]) for i in range(len(words) - n + 1)] 
    matches = process.extract(k, choices, limit=1, processor=utils.default_process)
    for match in matches:
        if match[1]>80:
            prompt = re.sub(match[0], v, prompt, flags=re.IGNORECASE)

#prompt
response = model_llm.generate_content(prompt)
content = response.text
print("llm response",content)

#perform replacement again
for k, v in replacement_reversed.items():
    words = content.split()  
    n = len(k.split())
    choices = [' '.join(words[i:i+n]) for i in range(len(words) - n + 1)]
    matches = process.extract(k, choices, limit=1, processor=utils.default_process)
    for match in matches:
        if match[1]>80:
            content = re.sub(match[0], v, content, flags=re.IGNORECASE)

print("final result", content)

以上是在發送給法學碩士之前刪除 PII 的簡單方法的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述:
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn