使用 OCR 數位化財務報告時,您可能會遇到各種方法來偵測這些報告中的特定類別。例如,像 Levenshtein 演算法這樣的傳統方法可以用於基於編輯距離的字串匹配,使其能夠有效地處理近似匹配,例如修正拼字錯誤或文字中的微小變化。
但是,當您需要在報告的一行中檢測多個類別時,尤其是當這些類別可能不完全按照預期顯示或可能在語義上重疊時,挑戰會變得更加複雜。
在這篇文章中,我們分析了使用 Facebook 的 LASER(與語言無關的 SEntence Representations)嵌入的語義匹配方法,展示了它如何有效地處理此任務。
問題
目標是識別給定文字行中的特定財務術語(類別)。假設我們有一組固定的預定義類別,代表所有可能感興趣的術語,例如:
[「收入」、「營業費用」、「營業利潤」、「折舊」、「利息」、「淨利」、「稅金」、「稅後利潤」、「指標 1」]
給定一個輸入行,例如:
「營業利潤、淨利和稅後利潤」
我們的目標是偵測此行中出現哪些識別符。
雷射語義匹配
我們不依賴精確或模糊的文本匹配,而是使用語義相似性。這種方法利用雷射嵌入來捕捉文字的語義,並使用餘弦相似度進行比較。
執行
預處理文字
在嵌入之前,透過將文字轉換為小寫並刪除多餘的空格來對文字進行預處理。這確保了一致性。
def preprocess(text): return text.lower().strip()
嵌入識別符和輸入線
雷射編碼器為標識符清單和輸入/OCR 行產生標準化嵌入。
identifier_embeddings = encoder.encode_sentences(identifiers, normalize_embeddings=True) ocr_line_embedding = encoder.encode_sentences([ocr_line], normalize_embeddings=True)[0]
以特異性對識別符進行排名
較長的標識符會根據字數進行排序。這有助於處理嵌套匹配,其中較長的標識符可能包含較短的標識符(例如,“稅後利潤”包含“利潤”)。
ranked_identifiers = sorted(identifiers, key=lambda x: len(x.split()), reverse=True) ranked_embeddings = encoder.encode_sentences(ranked_identifiers, normalize_embeddings=True)
計算相似度
使用餘弦相似度,我們測量每個標識符與輸入行在語意上的相似程度。相似度高於指定閾值的標識符被視為匹配。
matches = [] threshold = 0.6 for idx, identifier_embedding in enumerate(ranked_embeddings): similarity = cosine_similarity([identifier_embedding], [ocr_line_embedding])[0][0] if similarity >= threshold: matches.append((ranked_identifiers[idx], similarity))
解析嵌套匹配
為了處理重疊的標識符,會優先考慮較長的匹配,確保排除其中較短的匹配。
def preprocess(text): return text.lower().strip()
結果
執行程式碼時,輸出會提供偵測到的匹配項及其相似度分數的清單。對於範例輸入:
identifier_embeddings = encoder.encode_sentences(identifiers, normalize_embeddings=True) ocr_line_embedding = encoder.encode_sentences([ocr_line], normalize_embeddings=True)[0]
較長且複雜的輸入的注意事項
此方法適用於單行包含多個類別的結構化財務報告,前提是沒有太多類別或太多不相關的文字。然而,隨著較長、複雜的輸入或非結構化的使用者生成的文字的出現,準確性可能會降低,因為嵌入可能很難專注於相關類別。對於嘈雜或不可預測的輸入,它的可靠性較差。
結論
這篇文章示範了雷射嵌入如何成為檢測文本中多個類別的有用工具。這是最好的選擇嗎?也許不是,但這肯定是值得考慮的選項之一,尤其是在處理傳統匹配技術可能無法滿足的複雜場景時。
完整程式碼
ranked_identifiers = sorted(identifiers, key=lambda x: len(x.split()), reverse=True) ranked_embeddings = encoder.encode_sentences(ranked_identifiers, normalize_embeddings=True)
以上是在 Python 中使用 LASER 嵌入進行文字標識符的語意匹配的詳細內容。更多資訊請關注PHP中文網其他相關文章!

Tomergelistsinpython,YouCanusethe操作員,estextMethod,ListComprehension,Oritertools

在Python3中,可以通過多種方法連接兩個列表:1)使用 運算符,適用於小列表,但對大列表效率低;2)使用extend方法,適用於大列表,內存效率高,但會修改原列表;3)使用*運算符,適用於合併多個列表,不修改原列表;4)使用itertools.chain,適用於大數據集,內存效率高。

使用join()方法是Python中從列表連接字符串最有效的方法。 1)使用join()方法高效且易讀。 2)循環使用 運算符對大列表效率低。 3)列表推導式與join()結合適用於需要轉換的場景。 4)reduce()方法適用於其他類型歸約,但對字符串連接效率低。完整句子結束。

pythonexecutionistheprocessoftransformingpypythoncodeintoExecutablestructions.1)InternterPreterReadSthecode,ConvertingTingitIntObyTecode,whepythonvirtualmachine(pvm)theglobalinterpreterpreterpreterpreterlock(gil)the thepythonvirtualmachine(pvm)

Python的關鍵特性包括:1.語法簡潔易懂,適合初學者;2.動態類型系統,提高開發速度;3.豐富的標準庫,支持多種任務;4.強大的社區和生態系統,提供廣泛支持;5.解釋性,適合腳本和快速原型開發;6.多範式支持,適用於各種編程風格。

Python是解釋型語言,但也包含編譯過程。 1)Python代碼先編譯成字節碼。 2)字節碼由Python虛擬機解釋執行。 3)這種混合機制使Python既靈活又高效,但執行速度不如完全編譯型語言。

UseeAforloopWheniteratingOveraseQuenceOrforAspecificnumberoftimes; useAwhiLeLoopWhenconTinuingUntilAcIntiment.forloopsareIdealForkNownsences,而WhileLeleLeleLeleLeleLoopSituationSituationsItuationsItuationSuationSituationswithUndEtermentersitations。

pythonloopscanleadtoerrorslikeinfiniteloops,modifyingListsDuringteritation,逐個偏置,零indexingissues,andnestedloopineflinefficiencies


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

PhpStorm Mac 版本
最新(2018.2.1 )專業的PHP整合開發工具

Dreamweaver CS6
視覺化網頁開發工具

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境

VSCode Windows 64位元 下載
微軟推出的免費、功能強大的一款IDE編輯器

WebStorm Mac版
好用的JavaScript開發工具