搜尋
首頁後端開發Python教學Agent工具開髮指南:從設計到最佳化

Agent Tool Development Guide: From Design to Optimization

一、簡介

想像一下你正在組裝一個超級智慧的機器人管家(特務)。這個機器人需要各種工具來幫助你完成任務──就像哆啦A夢的4D口袋一樣。本文將教您如何創造這些強大的工具,讓您的AI管家更加得力和有效率。

2. 兩個核心工具設計模式

2.1 同步工具:即時回應模式

考慮使用自助咖啡機:

  1. 插入硬幣並按下「美式咖啡」按鈕
  2. 稍等幾秒
  3. 咖啡流出,可以喝了

這是典型的同步工具模式。代理呼叫該工具並等待立即結果 - 快速而簡單。

class WeatherTool(BaseTool):
    """Weather Query Tool - Synchronous Mode"""
    async def execute(self, city: str) -> dict:
        # Simple and direct like pressing a coffee machine button
        weather_data = await self.weather_api.get_current(city)
        return {
            "status": "success",
            "data": {
                "temperature": weather_data.temp,
                "humidity": weather_data.humidity,
                "description": weather_data.desc
            }
        }

用例:

  • 快速查詢:天氣、匯率、簡單計算
  • 簡單的操作:傳送訊息、切換控制
  • 即時回饋:驗證碼查詢、餘額查詢

2.2 非同步工具:任務追蹤模式

想像一下透過外帶應用程式訂購食物:

  1. 下單後,APP會給你一個訂單號碼
  2. 您可以隨時查看訂單狀態
  3. 配送完成後APP會通知您

這就是非同步工具的工作原理,非常適合需要較長時間處理的任務。

class DocumentAnalysisTool(BaseTool):
    """Document Analysis Tool - Asynchronous Mode"""

    async def start_task(self, file_path: str) -> str:
        # Like placing a food delivery order, returns a task ID
        task_id = str(uuid.uuid4())
        await self.task_queue.put({
            "task_id": task_id,
            "file_path": file_path,
            "status": "processing"
        })
        return task_id

    async def get_status(self, task_id: str) -> dict:
        # Like checking food delivery status
        task = await self.task_store.get(task_id)
        return {
            "task_id": task_id,
            "status": task["status"],
            "progress": task.get("progress", 0),
            "result": task.get("result", None)
        }

用例:

  • 耗時操作:大檔案處理、資料分析
  • 多步驟任務:影片渲染、報表產生
  • 需要進度追蹤:模型訓練、批次

3. 工具介面標準化:建立通用規範

就像所有電器都遵循統一的插座標準一樣,我們的工具介面也需要標準化。這可確保所有工具與代理商完美搭配。

3.1 工具說明規格

想像一下寫一份產品手冊,你需要清楚告訴使用者:

  • 該工具的作用
  • 需要什麼參數
  • 會回傳什麼結果
from pydantic import BaseModel, Field

class ToolSchema(BaseModel):
    """Tool Manual Template"""
    name: str = Field(..., description="Tool name")
    description: str = Field(..., description="Tool purpose description")
    parameters: dict = Field(..., description="Required parameters")
    required: List[str] = Field(default_factory=list, description="Required parameters")

    class Config:
        schema_extra = {
            "example": {
                "name": "Weather Query",
                "description": "Query weather information for specified city",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "city": {
                            "type": "string",
                            "description": "City name"
                        }
                    }
                },
                "required": ["city"]
            }
        }

3.2 統一基類

就像所有電器都需要電源開關和電源介面一樣,所有工具都需要遵循基本規格:

class BaseTool(ABC):
    """Base template for all tools"""

    @abstractmethod
    def get_schema(self) -> ToolSchema:
        """Tool manual"""
        pass

    def validate_input(self, params: Dict) -> Dict:
        """Parameter check, like a fuse in electrical appliances"""
        return ToolSchema(**params).dict()

    @abstractmethod
    async def execute(self, **kwargs) -> Dict:
        """Actual functionality execution"""
        pass

4. 錯誤處理:讓工具更可靠

就像家用電器需要防水、防震、過載保護一樣,工具也需要完善的保護機制。

4.1 錯誤分類及處理

想像一下處理快遞:

  • 位址錯誤→參數錯誤
  • 系統維護→服務暫時無法使用
  • 快遞太忙→需要限制速率並重試
class WeatherTool(BaseTool):
    """Weather Query Tool - Synchronous Mode"""
    async def execute(self, city: str) -> dict:
        # Simple and direct like pressing a coffee machine button
        weather_data = await self.weather_api.get_current(city)
        return {
            "status": "success",
            "data": {
                "temperature": weather_data.temp,
                "humidity": weather_data.humidity,
                "description": weather_data.desc
            }
        }

4.2 重試機制

就像第一次嘗試失敗時自動安排第二次送貨:

class DocumentAnalysisTool(BaseTool):
    """Document Analysis Tool - Asynchronous Mode"""

    async def start_task(self, file_path: str) -> str:
        # Like placing a food delivery order, returns a task ID
        task_id = str(uuid.uuid4())
        await self.task_queue.put({
            "task_id": task_id,
            "file_path": file_path,
            "status": "processing"
        })
        return task_id

    async def get_status(self, task_id: str) -> dict:
        # Like checking food delivery status
        task = await self.task_store.get(task_id)
        return {
            "task_id": task_id,
            "status": task["status"],
            "progress": task.get("progress", 0),
            "result": task.get("result", None)
        }

5.性能優化:讓工具更有效率

5.1 快取機制

就像便利商店一樣,將熱門商品放在顯眼的位置:

from pydantic import BaseModel, Field

class ToolSchema(BaseModel):
    """Tool Manual Template"""
    name: str = Field(..., description="Tool name")
    description: str = Field(..., description="Tool purpose description")
    parameters: dict = Field(..., description="Required parameters")
    required: List[str] = Field(default_factory=list, description="Required parameters")

    class Config:
        schema_extra = {
            "example": {
                "name": "Weather Query",
                "description": "Query weather information for specified city",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "city": {
                            "type": "string",
                            "description": "City name"
                        }
                    }
                },
                "required": ["city"]
            }
        }

5.2 並發控制

像醫院的預約系統,控制同時服務的數量:

class BaseTool(ABC):
    """Base template for all tools"""

    @abstractmethod
    def get_schema(self) -> ToolSchema:
        """Tool manual"""
        pass

    def validate_input(self, params: Dict) -> Dict:
        """Parameter check, like a fuse in electrical appliances"""
        return ToolSchema(**params).dict()

    @abstractmethod
    async def execute(self, **kwargs) -> Dict:
        """Actual functionality execution"""
        pass

6. 測試和文件:確保工具可靠性

6.1 單元測試

例如新產品上市前的品質檢查:

class ToolError(Exception):
    """Tool error base class"""
    def __init__(self, message: str, error_code: str, retry_after: Optional[int] = None):
        self.message = message
        self.error_code = error_code
        self.retry_after = retry_after

@error_handler
async def execute(self, **kwargs):
    try:
        # Execute specific operation
        result = await self._do_work(**kwargs)
        return {"status": "success", "data": result}
    except ValidationError:
        # Parameter error, like wrong address
        return {"status": "error", "code": "INVALID_PARAMS"}
    except RateLimitError as e:
        # Need rate limiting, like courier too busy
        return {
            "status": "error", 
            "code": "RATE_LIMIT",
            "retry_after": e.retry_after
        }

6.2 文檔標準

就像寫一份詳細且清楚的產品手冊:

class RetryableTool(BaseTool):
    @retry(
        stop=stop_after_attempt(3),  # Maximum 3 retries
        wait=wait_exponential(multiplier=1, min=4, max=10)  # Increasing wait time
    )
    async def execute_with_retry(self, **kwargs):
        return await self.execute(**kwargs)

七、總結

開發好的代理工具就像製作一個完美的工具箱:

  1. 正確的工具分類 - 同步/非同步各有其用途
  2. 標準化介面-方便統一管理
  3. 保護機制-處理各種異常
  4. 追求效率-需要時緩存,需要時限速
  5. 品質焦點 - 徹底的測試,清晰的文件

記住:好的工具可以讓 Agent 的效率加倍,而差的工具則會處處限制 Agent。

以上是Agent工具開髮指南:從設計到最佳化的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
Python vs.C:申請和用例Python vs.C:申請和用例Apr 12, 2025 am 12:01 AM

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

2小時的Python計劃:一種現實的方法2小時的Python計劃:一種現實的方法Apr 11, 2025 am 12:04 AM

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python:探索其主要應用程序Python:探索其主要應用程序Apr 10, 2025 am 09:41 AM

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

您可以在2小時內學到多少python?您可以在2小時內學到多少python?Apr 09, 2025 pm 04:33 PM

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

如何在10小時內通過項目和問題驅動的方式教計算機小白編程基礎?如何在10小時內通過項目和問題驅動的方式教計算機小白編程基礎?Apr 02, 2025 am 07:18 AM

如何在10小時內教計算機小白編程基礎?如果你只有10個小時來教計算機小白一些編程知識,你會選擇教些什麼�...

如何在使用 Fiddler Everywhere 進行中間人讀取時避免被瀏覽器檢測到?如何在使用 Fiddler Everywhere 進行中間人讀取時避免被瀏覽器檢測到?Apr 02, 2025 am 07:15 AM

使用FiddlerEverywhere進行中間人讀取時如何避免被檢測到當你使用FiddlerEverywhere...

Python 3.6加載Pickle文件報錯"__builtin__"模塊未找到怎麼辦?Python 3.6加載Pickle文件報錯"__builtin__"模塊未找到怎麼辦?Apr 02, 2025 am 07:12 AM

Python3.6環境下加載Pickle文件報錯:ModuleNotFoundError:Nomodulenamed...

如何提高jieba分詞在景區評論分析中的準確性?如何提高jieba分詞在景區評論分析中的準確性?Apr 02, 2025 am 07:09 AM

如何解決jieba分詞在景區評論分析中的問題?當我們在進行景區評論分析時,往往會使用jieba分詞工具來處理文�...

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
3 週前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解鎖Myrise中的所有內容
3 週前By尊渡假赌尊渡假赌尊渡假赌

熱工具

Atom編輯器mac版下載

Atom編輯器mac版下載

最受歡迎的的開源編輯器

MantisBT

MantisBT

Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強大的PHP整合開發環境

EditPlus 中文破解版

EditPlus 中文破解版

體積小,語法高亮,不支援程式碼提示功能

SecLists

SecLists

SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。