使用HSV 顏色空間改進OpenCV 的紅色檢測
在OpenCV 中,HSV 顏色空間提供了一種有效的方法來檢測特定顏色,包括紅色。然而,由於 HSV 中色調通道的圓形特性,紅色可以圍繞著接近 180 度的值。這可能會給準確檢測紅色物體帶來挑戰。
為了解決這個問題,可以透過考慮色調分量的兩個範圍來實現更精確的檢測:[0,10] 和 [170, 180]。透過包含這兩個範圍,我們確保偵測覆蓋整個紅色色譜。
以下 Python 程式碼示範了這個方法:
import cv2 # Read the input image image = cv2.imread("path_to_image") # Convert BGR to HSV color space hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) # Define HSV values for red color hue_min1 = 0 hue_max1 = 10 hue_min2 = 170 hue_max2 = 180 sat_min = 70 sat_max = 255 val_min = 50 val_max = 255 # Create masks for the two hue ranges mask1 = cv2.inRange(hsv, (hue_min1, sat_min, val_min), (hue_max1, sat_max, val_max)) mask2 = cv2.inRange(hsv, (hue_min2, sat_min, val_min), (hue_max2, sat_max, val_max)) # Combine the masks mask = mask1 | mask2 # Display the mask cv2.imshow("Mask", mask) cv2.waitKey(0) cv2.destroyAllWindows()
此程式碼有效地偵測影像中的紅色矩形,如遮罩輸出所示。
替代方法
另一種方法方法是將BGR影像反轉,然後轉換為HSV。這種方法本質上是搜尋互補色青色(色調通道上的 90 度),使您可以在單一範圍內檢測紅色。
以下Python 程式碼示範了此技術:
import cv2 # Read the input image image = cv2.imread("path_to_image") # Invert the BGR image inverted_image = cv2.bitwise_not(image) # Convert inverted image to HSV color space hsv_inverted = cv2.cvtColor(inverted_image, cv2.COLOR_BGR2HSV) # Define HSV values for cyan color (inverted red) hue_min = 90 - 10 hue_max = 90 + 10 sat_min = 70 sat_max = 255 val_min = 50 val_max = 255 # Create a mask for the cyan color range mask = cv2.inRange(hsv_inverted, (hue_min, sat_min, val_min), (hue_max, sat_max, val_max)) # Display the mask cv2.imshow("Mask", mask) cv2.waitKey(0) cv2.destroyAllWindows()
這兩種方法都在HSV 色彩空間中使用OpenCV 改進了紅色檢測,為影像處理應用程式提供了更準確的結果。
以上是如何使用 HSV 色彩空間在 OpenCV 中實現更精確的紅色檢測?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

C#適合需要高開發效率和跨平台支持的項目,而C 適用於需要高性能和底層控制的應用。 1)C#簡化開發,提供垃圾回收和豐富類庫,適合企業級應用。 2)C 允許直接內存操作,適用於遊戲開發和高性能計算。

C 持續使用的理由包括其高性能、廣泛應用和不斷演進的特性。 1)高效性能:通過直接操作內存和硬件,C 在系統編程和高性能計算中表現出色。 2)廣泛應用:在遊戲開發、嵌入式系統等領域大放異彩。 3)不斷演進:自1983年發布以來,C 持續增加新特性,保持其競爭力。

C 和XML的未來發展趨勢分別為:1)C 將通過C 20和C 23標準引入模塊、概念和協程等新特性,提升編程效率和安全性;2)XML將繼續在數據交換和配置文件中佔據重要地位,但會面臨JSON和YAML的挑戰,並朝著更簡潔和易解析的方向發展,如XMLSchema1.1和XPath3.1的改進。

現代C 設計模式利用C 11及以後的新特性實現,幫助構建更靈活、高效的軟件。 1)使用lambda表達式和std::function簡化觀察者模式。 2)通過移動語義和完美轉發優化性能。 3)智能指針確保類型安全和資源管理。

C 多線程和並發編程的核心概念包括線程的創建與管理、同步與互斥、條件變量、線程池、異步編程、常見錯誤與調試技巧以及性能優化與最佳實踐。 1)創建線程使用std::thread類,示例展示瞭如何創建並等待線程完成。 2)同步與互斥使用std::mutex和std::lock_guard保護共享資源,避免數據競爭。 3)條件變量通過std::condition_variable實現線程間的通信和同步。 4)線程池示例展示瞭如何使用ThreadPool類並行處理任務,提高效率。 5)異步編程使用std::as

C 的內存管理、指針和模板是核心特性。 1.內存管理通過new和delete手動分配和釋放內存,需注意堆和棧的區別。 2.指針允許直接操作內存地址,使用需謹慎,智能指針可簡化管理。 3.模板實現泛型編程,提高代碼重用性和靈活性,需理解類型推導和特化。

C 適合系統編程和硬件交互,因為它提供了接近硬件的控制能力和麵向對象編程的強大特性。 1)C 通過指針、內存管理和位操作等低級特性,實現高效的系統級操作。 2)硬件交互通過設備驅動程序實現,C 可以編寫這些驅動程序,處理與硬件設備的通信。

C 適合構建高性能遊戲和仿真係統,因為它提供接近硬件的控制和高效性能。 1)內存管理:手動控制減少碎片,提高性能。 2)編譯時優化:內聯函數和循環展開提昇運行速度。 3)低級操作:直接訪問硬件,優化圖形和物理計算。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

Atom編輯器mac版下載
最受歡迎的的開源編輯器

MantisBT
Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境

EditPlus 中文破解版
體積小,語法高亮,不支援程式碼提示功能

SecLists
SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。