將Pandas 中的日期和時間列與pd.to_datetime() 組合
在Pandas 中處理日期和時間時,通常有必要將單獨的欄位組合成單一日期時間物件。一種方法是使用 pd.to_datetime() 函數。
問題陳述
考慮一個包含「日期」和「時間」欄位的資料框,如下所示:
Date Time 01-06-2013 23:00:00 02-06-2013 01:00:00 02-06-2013 21:00:00 02-06-2013 22:00:00 02-06-2013 23:00:00 03-06-2013 01:00:00 03-06-2013 21:00:00 03-06-2013 22:00:00 03-06-2013 23:00:00 04-06-2013 01:00:00
我們的目標是將這兩個欄位合併為一個「日期和」
使用字串連接的解決方案
一種方法是將「日期」和「時間」列連接為字串,然後將結果字串轉換為使用pd.to_datetime() 的datetime 物件:
result = pd.to_datetime(df['Date'] + ' ' + df['Time'])
這會將連接的字串轉換為一系列日期時間物件。
解決方案使用format 參數
或者,您可以使用pd.to_datetime() 的format 參數來指定組合的確切格式string:
result = pd.to_datetime(df['Date'] + df['Time'], format='%m-%d-%Y %H:%M:%S')
這種方法比前一種方法更快,特別是在處理大型數據時
性能比較
使用%%timeit 魔法命令,我們可以比較兩種方法的效能:
df = pd.concat([df for _ in range(1000000)]).reset_index(drop=True) %timeit pd.to_datetime(df['Date'] + ' ' + df['Time']) %timeit pd.to_datetime(df['Date'] + df['Time'], format='%m-%d-%Y %H:%M:%S')
第二種對於大型資料集,使用格式參數的方法明顯更快。
以上是如何使用 pd.to_datetime() 有效組合 Pandas 中的日期和時間列?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

Linux終端中查看Python版本時遇到權限問題的解決方法當你在Linux終端中嘗試查看Python的版本時,輸入python...

本文解釋瞭如何使用美麗的湯庫來解析html。 它詳細介紹了常見方法,例如find(),find_all(),select()和get_text(),以用於數據提取,處理不同的HTML結構和錯誤以及替代方案(SEL)

Python 對象的序列化和反序列化是任何非平凡程序的關鍵方面。如果您將某些內容保存到 Python 文件中,如果您讀取配置文件,或者如果您響應 HTTP 請求,您都會進行對象序列化和反序列化。 從某種意義上說,序列化和反序列化是世界上最無聊的事情。誰會在乎所有這些格式和協議?您想持久化或流式傳輸一些 Python 對象,並在以後完整地取回它們。 這是一種在概念層面上看待世界的好方法。但是,在實際層面上,您選擇的序列化方案、格式或協議可能會決定程序運行的速度、安全性、維護狀態的自由度以及與其他系

Python的statistics模塊提供強大的數據統計分析功能,幫助我們快速理解數據整體特徵,例如生物統計學和商業分析等領域。無需逐個查看數據點,只需查看均值或方差等統計量,即可發現原始數據中可能被忽略的趨勢和特徵,並更輕鬆、有效地比較大型數據集。 本教程將介紹如何計算平均值和衡量數據集的離散程度。除非另有說明,本模塊中的所有函數都支持使用mean()函數計算平均值,而非簡單的求和平均。 也可使用浮點數。 import random import statistics from fracti

本文比較了Tensorflow和Pytorch的深度學習。 它詳細介紹了所涉及的步驟:數據準備,模型構建,培訓,評估和部署。 框架之間的關鍵差異,特別是關於計算刻度的

該教程建立在先前對美麗湯的介紹基礎上,重點是簡單的樹導航之外的DOM操縱。 我們將探索有效的搜索方法和技術,以修改HTML結構。 一種常見的DOM搜索方法是EX

本文指導Python開發人員構建命令行界面(CLIS)。 它使用Typer,Click和ArgParse等庫詳細介紹,強調輸入/輸出處理,並促進用戶友好的設計模式,以提高CLI可用性。

本文討論了諸如Numpy,Pandas,Matplotlib,Scikit-Learn,Tensorflow,Tensorflow,Django,Blask和請求等流行的Python庫,並詳細介紹了它們在科學計算,數據分析,可視化,機器學習,網絡開發和H中的用途


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

Atom編輯器mac版下載
最受歡迎的的開源編輯器

記事本++7.3.1
好用且免費的程式碼編輯器

SAP NetWeaver Server Adapter for Eclipse
將Eclipse與SAP NetWeaver應用伺服器整合。

VSCode Windows 64位元 下載
微軟推出的免費、功能強大的一款IDE編輯器

Safe Exam Browser
Safe Exam Browser是一個安全的瀏覽器環境,安全地進行線上考試。該軟體將任何電腦變成一個安全的工作站。它控制對任何實用工具的訪問,並防止學生使用未經授權的資源。