該用Apply還是Transform?
概述:
在Pandas 中,groupby() 方法提供了兩個用於操作按特定列分組的資料的選項:apply () 和transform()。這些方法在輸入、輸出和行為方面有所不同。
主要差異:
功能 | 應用變換 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
傳遞包含每個組的所有列d> | 為每個群組中的每個欄位傳遞單獨的系列 | ||||||||||||
輸出: | 可以傳回標量、Series、DataFrames或其他物件 | 必須傳回與群組長度相同的序列(Series、陣列或清單) | ||||||||||||
行為: |
對每個群組內的整個DataFrame 進行操作 | 一次對單一欄位進行操作 |
當您需要將自訂函數套用到每個群組中的整個 DataFrame 時。 這允許複雜的逐行處理,並傳回與輸入具有相同行數的 DataFrame。
df.groupby('State').apply(lambda x: pd.DataFrame({'Average': x.mean()}))
範例:
- 何時使用轉換:
何時使用轉換:
df.groupby('State').transform(lambda x: x - x.mean())當您需要在當您每個組中逐列應用自訂函數時。
這允許您操作特定列不影響整個 DataFrame。
- 範例:
- 附加說明:
以上是應用與轉換:什麼時候應該在 Pandas Groupby 中使用 Which?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

是的,YouCanconCatenatElistsusingAloopInpyThon.1)使用eparateLoopsForeachListToAppendIteMstoaresultList.2)useanestedlooptoiterateOverMultipliplipliplipliplipliplipliplipliplipliplistforamoreConciseApprace.3)

ThemostefficientmethodsforconcatenatinglistsinPythonare:1)theextend()methodforin-placemodification,2)itertools.chain()formemoryefficiencywithlargedatasets.Theextend()methodmodifiestheoriginallist,makingitmemory-efficientbutrequirescautionifpreserving

pythonboopsincludeforandwhileloops,with forloopsidealforequencessand and whileloopsforcondition repetition.bestpracticesinvolve:1)使用listComprehensionsforshensionsforsimpletranspletransformations,2)obseringEnumerateForIndex-valuepairs,3)optingftingftingfortermornemoremoremoremore

Python不是嚴格的逐行執行,而是基於解釋器的機制進行優化和條件執行。解釋器將代碼轉換為字節碼,由PVM執行,可能會預編譯常量表達式或優化循環。理解這些機制有助於優化代碼和提高效率。

可以使用多種方法在Python中連接兩個列表:1.使用 操作符,簡單但在大列表中效率低;2.使用extend方法,效率高但會修改原列表;3.使用 =操作符,兼具效率和可讀性;4.使用itertools.chain函數,內存效率高但需額外導入;5.使用列表解析,優雅但可能過於復雜。選擇方法應根據代碼上下文和需求。

有多種方法可以合併Python列表:1.使用 操作符,簡單但對大列表不內存高效;2.使用extend方法,內存高效但會修改原列表;3.使用itertools.chain,適用於大數據集;4.使用*操作符,一行代碼合併小到中型列表;5.使用numpy.concatenate,適用於大數據集和性能要求高的場景;6.使用append方法,適用於小列表但效率低。選擇方法時需考慮列表大小和應用場景。

CompiledLanguagesOffersPeedAndSecurity,而interneterpretledlanguages provideeaseafuseanDoctability.1)commiledlanguageslikec arefasterandSecureButhOnderDevevelmendeclementCyclesclesclesclesclesclesclesclesclesclesclesclesclesclesclesclesclesclesandentency.2)cransportedeplatectentysenty


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

SAP NetWeaver Server Adapter for Eclipse
將Eclipse與SAP NetWeaver應用伺服器整合。

記事本++7.3.1
好用且免費的程式碼編輯器

EditPlus 中文破解版
體積小,語法高亮,不支援程式碼提示功能

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境