搜尋
首頁後端開發Python教學如何使用 KNearest 和 SVM 演算法在 OpenCV-Python 中實現基本的數位識別 OCR 系統?

How can I implement a basic digit recognition OCR system in OpenCV-Python using KNearest and SVM algorithms?

OpenCV-Python 中的簡單數字辨識OCR

介紹

旨在指導您可以透過實作基本的數位辨識OCR(光學字元辨識)系統使用OpenCV-Python。我們將探索兩種流行的機器學習演算法:KNearest 和 SVM。

問題 1:Letter_recognition.data 檔案

Letter_recognition.data 是 OpenCV-Python 中包含的資料集樣本。它包含手寫字母的集合以及每個字母的 16 個特徵值。該文件用作各種字符識別任務的訓練資料。

建立您自己的Letter_recognition.data:

您可以按照以下步驟建立自己的letter_recognition.data 檔案:
  1. 你的字母資料集,每個字母表示為10x10 像素影像。
  2. 從每張影像中擷取像素值,形成 100 個值的特徵向量。
  3. 手動為每個字母分配標籤(0-25,對應於 A-Z)。
  4. 將特徵向量和標籤保存在文字檔案中,每行的格式為:

問題2:KNearest

results.ravel() 將多維數組轉換為已識別數字數組到平面一維陣列。這樣可以更輕鬆地解釋和顯示結果。

問題3:簡單的數位辨識工具

要使用letter_recognition.data 建立簡單的數位辨識工具,請依照下列步驟操作步驟:

資料準備:

    載入自訂letter_recognition.data 檔案或使用OpenCV 中的範例。

訓練:

    建立 KNearest 或 SVM 分類器實例。
  • 使用 letter_recognition.data 中的樣本和反應訓練分類器。

測試:

    載入影像包含要辨識的數字。
  • 預處理影像以隔離個體數字。
  • 將每個數字轉換為特徵向量(100 個像素值)。
  • 使用經過訓練的分類器找到每個特徵向量的最接近匹配並顯示相應的數字。

範例程式碼:

import numpy as np
import cv2

# Load data
samples = np.loadtxt('my_letter_recognition.data', np.float32, delimiter=',', converters={ 0 : lambda ch : ord(ch)-ord('A') })
responses = a[:,0]

# Create classifier
model = cv2.KNearest()
model.train(samples, responses)

# Load test image
test_img = cv2.imread('test_digits.png')

# Preprocess image
gray = cv2.cvtColor(test_img, cv2.COLOR_BGR2GRAY)
thresh = cv2.adaptiveThreshold(gray, 255, 1, 1, 11, 2)

# Extract digits
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
digits = []
for cnt in contours:
    if cv2.contourArea(cnt) > 50:
        [x, y, w, h] = cv2.boundingRect(cnt)
        roi = thresh[y:y+h, x:x+w]
        roismall = cv2.resize(roi, (10, 10))
        digits.append(roismall)

# Recognize digits
results = []
for digit in digits:
    roismall = roismall.reshape((1, 100))
    roismall = np.float32(roismall)
    _, results, _, _ = model.find_nearest(roismall, k=1)
    results = results.ravel()
    results = [chr(int(res) + ord('A')) for res in results]

# Display results
output = cv2.cvtColor(test_img, cv2.COLOR_BGR2RGB)
for (digit, (x, y, w, h)) in zip(results, contours):
    cv2.rectangle(output, (x, y), (x + w, y + h), (0, 255, 0), 2)
    cv2.putText(output, str(digit), (x, y), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)

cv2.imshow('Output', output)
cv2.waitKey(0)
此範例使用 KNearest 進行數位識別,但您可以透過建立 SVM 分類器將其替換為 SVM。

以上是如何使用 KNearest 和 SVM 演算法在 OpenCV-Python 中實現基本的數位識別 OCR 系統?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
Python的執行模型:編譯,解釋還是兩者?Python的執行模型:編譯,解釋還是兩者?May 10, 2025 am 12:04 AM

pythonisbothCompileDIntered。

Python是按線執行的嗎?Python是按線執行的嗎?May 10, 2025 am 12:03 AM

Python不是嚴格的逐行執行,而是基於解釋器的機制進行優化和條件執行。解釋器將代碼轉換為字節碼,由PVM執行,可能會預編譯常量表達式或優化循環。理解這些機制有助於優化代碼和提高效率。

python中兩個列表的串聯替代方案是什麼?python中兩個列表的串聯替代方案是什麼?May 09, 2025 am 12:16 AM

可以使用多種方法在Python中連接兩個列表:1.使用 操作符,簡單但在大列表中效率低;2.使用extend方法,效率高但會修改原列表;3.使用 =操作符,兼具效率和可讀性;4.使用itertools.chain函數,內存效率高但需額外導入;5.使用列表解析,優雅但可能過於復雜。選擇方法應根據代碼上下文和需求。

Python:合併兩個列表的有效方法Python:合併兩個列表的有效方法May 09, 2025 am 12:15 AM

有多種方法可以合併Python列表:1.使用 操作符,簡單但對大列表不內存高效;2.使用extend方法,內存高效但會修改原列表;3.使用itertools.chain,適用於大數據集;4.使用*操作符,一行代碼合併小到中型列表;5.使用numpy.concatenate,適用於大數據集和性能要求高的場景;6.使用append方法,適用於小列表但效率低。選擇方法時需考慮列表大小和應用場景。

編譯的與解釋的語言:優點和缺點編譯的與解釋的語言:優點和缺點May 09, 2025 am 12:06 AM

CompiledLanguagesOffersPeedAndSecurity,而interneterpretledlanguages provideeaseafuseanDoctability.1)commiledlanguageslikec arefasterandSecureButhOnderDevevelmendeclementCyclesclesclesclesclesclesclesclesclesclesclesclesclesclesclesclesclesclesandentency.2)cransportedeplatectentysenty

Python:對於循環,最完整的指南Python:對於循環,最完整的指南May 09, 2025 am 12:05 AM

Python中,for循環用於遍歷可迭代對象,while循環用於條件滿足時重複執行操作。 1)for循環示例:遍歷列表並打印元素。 2)while循環示例:猜數字遊戲,直到猜對為止。掌握循環原理和優化技巧可提高代碼效率和可靠性。

python concatenate列表到一個字符串中python concatenate列表到一個字符串中May 09, 2025 am 12:02 AM

要將列表連接成字符串,Python中使用join()方法是最佳選擇。 1)使用join()方法將列表元素連接成字符串,如''.join(my_list)。 2)對於包含數字的列表,先用map(str,numbers)轉換為字符串再連接。 3)可以使用生成器表達式進行複雜格式化,如','.join(f'({fruit})'forfruitinfruits)。 4)處理混合數據類型時,使用map(str,mixed_list)確保所有元素可轉換為字符串。 5)對於大型列表,使用''.join(large_li

Python的混合方法:編譯和解釋合併Python的混合方法:編譯和解釋合併May 08, 2025 am 12:16 AM

pythonuseshybridapprace,ComminingCompilationTobyTecoDeAndInterpretation.1)codeiscompiledtoplatform-Indepententbybytecode.2)bytecodeisisterpretedbybythepbybythepythonvirtualmachine,增強效率和通用性。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

VSCode Windows 64位元 下載

VSCode Windows 64位元 下載

微軟推出的免費、功能強大的一款IDE編輯器

Dreamweaver Mac版

Dreamweaver Mac版

視覺化網頁開發工具

mPDF

mPDF

mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具