編輯距離可用於詐欺偵測系統,將使用者輸入的資料(例如姓名、地址或電子郵件)與現有資料進行比較,以識別相似但可能具有詐騙的條目。
這是將此功能整合到 Django 專案中的逐步指南。
1. 用例
詐欺偵測系統可以比較:
- 類似電子郵件:偵測建立時略有不同的帳戶(例如,user@example.com 與 userr@example.com)。
- 鄰近位址:檢查多個帳戶是否使用幾乎相同的位址。
- 相似名稱:發現名稱稍有修改的使用者(例如,John Doe 與 Jon Doe)。
2. 實施步驟
a.建立中間件或訊號來分析資料
使用 Django 的訊號在註冊或更新時檢查新使用者資料。
b.安裝編輯運算功能
整合函式庫來計算 Levenshtein 距離或使用以下 Python 函數:
from django.db.models import Q from .models import User # Assume User is your user model def levenshtein_distance(a, b): n, m = len(a), len(b) if n > m: a, b = b, a n, m = m, n current_row = range(n + 1) # Keep current and previous row for i in range(1, m + 1): previous_row, current_row = current_row, [i] + [0] * n for j in range(1, n + 1): add, delete, change = previous_row[j] + 1, current_row[j - 1] + 1, previous_row[j - 1] if a[j - 1] != b[i - 1]: change += 1 current_row[j] = min(add, delete, change) return current_row[n]
c.新增詐欺偵測功能
在您的訊號或中介軟體中,將輸入的資料與資料庫中的資料進行比較,以查找相似的條目。
from django.db.models import Q from .models import User # Assume User is your user model def detect_similar_entries(email, threshold=2): users = User.objects.filter(~Q(email=email)) # Exclure l'utilisateur actuel similar_users = [] for user in users: distance = levenshtein_distance(email, user.email) if distance <h4> <strong>d.連接到使用者的 Signal post_save</strong> </h4> <p>在使用者註冊或更新後使用 post_save 訊號執行此檢查:<br> </p> <pre class="brush:php;toolbar:false">from django.db.models.signals import post_save from django.dispatch import receiver from .models import User from .utils import detect_similar_entries # Import your function @receiver(post_save, sender=User) def check_for_fraud(sender, instance, **kwargs): similar_users = detect_similar_entries(instance.email) if similar_users: print(f"Potential fraud detected for {instance.email}:") for user, distance in similar_users: print(f" - Similar email: {user.email}, Distance: {distance}")
e.選項:新增詐欺日誌範本
要追蹤可疑的詐騙行為,您可以建立 FraudLog 模型:
from django.db import models from django.contrib.auth.models import User class FraudLog(models.Model): suspicious_user = models.ForeignKey(User, related_name='suspicious_logs', on_delete=models.CASCADE) similar_user = models.ForeignKey(User, related_name='similar_logs', on_delete=models.CASCADE) distance = models.IntegerField() created_at = models.DateTimeField(auto_now_add=True)
在此範本中儲存可疑符合項目:
from django.db.models import Q from .models import User # Assume User is your user model def levenshtein_distance(a, b): n, m = len(a), len(b) if n > m: a, b = b, a n, m = m, n current_row = range(n + 1) # Keep current and previous row for i in range(1, m + 1): previous_row, current_row = current_row, [i] + [0] * n for j in range(1, n + 1): add, delete, change = previous_row[j] + 1, current_row[j - 1] + 1, previous_row[j - 1] if a[j - 1] != b[i - 1]: change += 1 current_row[j] = min(add, delete, change) return current_row[n]
3. 改進與最佳化
a.極限比較
- 只比較最近的使用者或來自同一地區、公司等的使用者
b.調整閾值
- 根據欄位設定不同的可接受距離閾值(例如,電子郵件的閾值為 1,姓名的閾值為 2)。
c.先進演算法的使用
- 探索 RapidFuzz 等函式庫以最佳化計算。
d.整合到 Django 管理
- 在管理介面中為存在潛在詐欺風險的使用者新增警報。
4. 結論
透過這種方法,您已經實現了基於編輯距離的詐欺偵測系統。它有助於識別相似的條目,降低建立詐欺帳戶或重複資料的風險。該系統是可擴展的,可以進行調整以滿足您專案的特定需求。
以上是在 Django 專案中實現具有 Levenshtein Distance 的詐欺偵測系統的詳細內容。更多資訊請關注PHP中文網其他相關文章!

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

如何在10小時內教計算機小白編程基礎?如果你只有10個小時來教計算機小白一些編程知識,你會選擇教些什麼�...

使用FiddlerEverywhere進行中間人讀取時如何避免被檢測到當你使用FiddlerEverywhere...

Python3.6環境下加載Pickle文件報錯:ModuleNotFoundError:Nomodulenamed...

如何解決jieba分詞在景區評論分析中的問題?當我們在進行景區評論分析時,往往會使用jieba分詞工具來處理文�...

如何使用正則表達式匹配到第一個閉合標籤就停止?在處理HTML或其他標記語言時,常常需要使用正則表達式來�...


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

MantisBT
Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境

SublimeText3漢化版
中文版,非常好用

PhpStorm Mac 版本
最新(2018.2.1 )專業的PHP整合開發工具

SecLists
SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。