二維陣列爪子壓力測量的峰值檢測演算法
為了將狗爪子的壓力測量分割成不同的解剖區域,本地可以使用最大過濾器。
局部最大過濾器實作
<code class="python">import numpy as np from scipy.ndimage.filters import maximum_filter from scipy.ndimage.morphology import generate_binary_structure, binary_erosion from scipy.ndimage.measurements import label def detect_peaks(image): """ Utilizes a local maximum filter to identify and return a mask of peak locations. """ # Defines an 8-connected neighborhood neighborhood = generate_binary_structure(2,2) # Detects local maxima local_max = maximum_filter(image, footprint=neighborhood)==image # Creates a mask of the background background = (image==0) # Erodes the background to isolate peaks eroded_background = binary_erosion(background, structure=neighborhood, border_value=1) # Generates the final mask by removing background from the local_max mask detected_peaks = local_max ^ eroded_background return detected_peaks</code>
使用和後處理
注意:
實施增強的注意事項:
以上是局部最大值濾波器如何將狗爪壓力測量結果分割成不同的區域?的詳細內容。更多資訊請關注PHP中文網其他相關文章!